Journée simulations du réseau semiconducteurs TCAD simulations of edgeless pixel sensors aimed at HL-LHC Marco Bomben – LPNHE, Paris.

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Radiation damage in silicon sensors
Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance at Extreme Hadron Fluence G. Lindström (a), E. Fretwurst (a), F. Hönniger.
New Operation Scenarios for Severely Irradiated Silicon Detectors G. Casse University of Liverpool 1 VERTEX 2009, Mooi Veluwe (NL) September 2009.
TCAD simulations for pixel detectors Summary: 1)Geometry layout: doping profiles for 3D geometry; 2) Results: electrostatic potential, electric field distribution;
Università degli Studi di Perugia Università degli Studi di Perugia IMM Bologna 1 Measurements and Simulations of Charge Collection Efficiency of p+/n.
New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
Hartmut Sadrozinski US-ATLAS 9/22/03 Detector Technologies for an All-Semiconductor Tracker at the sLHC Hartmut F.W. Sadrozinski SCIPP, UC Santa Cruz.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Vertex 2001 Brunnen, Switzerland Phil Allport Gianluigi Casse Ashley Greenall Salva Marti i Garcia Charge Collection Efficiency Studies with Irradiated.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
November 3-8, 2002D. Bortoletto - Vertex Silicon Sensors for CMS Daniela Bortoletto Purdue University Grad students: Kim Giolo, Amit Roy, Seunghee.
Capacitance of Silicon Pixels Sally Seidel, Grant Gorfine, Martin Hoeferkamp, Veronica Mata-Bruni, and Geno Santistevan University of New Mexico PIXEL.
1 Semiconductor Detectors  It may be that when this class is taught 10 years on, we may only study semiconductor detectors  In general, silicon provides.
8/22/01Marina Artuso - Pixel Sensor Meeting - Aug Sensor R&D at Syracuse University Marina Artuso Chaouki Boulahouache Brian Gantz Paul Gelling.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
Edge-TCT and Alibava measurements with pion and neutron irradiated micro-strip detectors V. Cindro 1, G. Kramberger 1, I. Mandić 1, M. Mikuž 1,2, M. Milovanović.
TCAD Simulations of Radiation Damage Effects at High Fluences in Silicon Detectors with Sentaurus TCAD D. Passeri(1,2), F. Moscatelli(2,3), A. Morozzi(1,2),
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
QA Workshop at CERN 3-4 November Hamamatsu silicon detectors for high energy physics experiments Kazuhisa Yamamura*, Shintaro Kamada.
SILICON DETECTORS PART I Characteristics on semiconductors.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Minni Singla & Sudeep Chatterji Goethe University, Frankfurt Development of radiation hard silicon microstrip detectors for the CBM experiment Special.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
PROCESS AND DEVICE SIMULATION OF A POWER MOSFET USING SILVACO TCAD.
1 Development of radiation hard microstrip detectors for the CBM Experiment Sudeep Chatterji GSI Helmholtz Centre for Heavy Ion Research DPG Bonn 16 March,
Planar Pixels Sensors Activities in France. Phase-2 and core R&D activities in France -Development of sensor simulations models -Sensor technology Edgeless/active.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Ultra-Fast Silicon Detectors (UFSD)
Simulations of 3D detectors
Update on TCAD Simulation Mathieu Benoit. Introduction The Synopsis Sentaurus Simulation tool – Licenses at CERN – Integration in LXBatch vs Engineering.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich 11th RD50 Workshop CERN Nov Thin planar pixel detectors for highest radiation levels.
A. Macchiolo, 13 th RD50 Workshop, CERN 11 th November Anna Macchiolo - MPP Munich N-in-n and n-in-p Pixel Sensor Production at CiS  Investigation.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
G. Steinbrück, University of Hamburg, SLHC Workshop, Perugia, 3-4 April Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance.
Joachim Erfle Summary of measurements after first irradiation of HPK samples 19 th RD50 Workshop November 2011 CERN Joachim.
Overview of Activities at COMSATS Presented by: Team Leader: Hira KhanDr. Arshad S. Bhatti Sujjia Shaukat.
INFN and University of Perugia Characterization of radiation damage effects in silicon detectors at High Fluence HL-LHC D. Passeri (1,2), F. Moscatelli.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
T. Lari – INFN Milan Status of ATLAS Pixel Test beam simulation Status of the validation studies with test-beam data of the Geant4 simulation and Pixel.
Celso Figueiredo26/10/2015 Characterization and optimization of silicon sensors for intense radiation fields Traineeship project within the PH-DT-DD section.
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
Activité LPNHE en 2012 et 2013 G.Calderini Tracker upgrade.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
July 24,2000Gabriele Chiodini1 Measurements in magnetic field - digression Lorentz angle measurements –ATLAS measurements – CMS measurements Radiation.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Exemples d'utilisation des outils TCAD pour la technologie HVCMOS Journées VLSI - FPGA - PCB de l'IN2P3, Marseille Jian LIU — SDU/CPPM (PhD Student) 12.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
MOHAMAD KHALIL APC LABORATORY PARIS 17/06/2013 DSSD and SSD Simulation with Silvaco.
Characterization and modelling of signal dynamics in 3D-DDTC detectors
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
First production of Ultra-Fast Silicon Detectors at FBK
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
SILVACO simulations & clean room measurements
Production of 3D silicon pixel sensors at FBK for the ATLAS IBL
TCAD Simulations of Silicon Detectors operating at High Fluences D
(with R. Arcidiacono, A. Solano)
Semiconductor Detectors
Beam Test Results for the CMS Forward Pixel Detector
Enhanced Lateral Drift (ELAD) sensors
Presentation transcript:

Journée simulations du réseau semiconducteurs TCAD simulations of edgeless pixel sensors aimed at HL-LHC Marco Bomben – LPNHE, Paris

Outline Edgeless pixel sensors for the HL-LHC Atlas tracker Simulations of the FBK-LPNHE edgeless production – Introduction to SILVACO – Design studies – Electrical characterization – Expected behavior after irradiation – Simulated charge collection, before and after irradiation – Comparison to data whenever is possible Conclusions & Outlook 2 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

ATLAS PIXELS AND THE HL-LHC PHASE 3 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

The ATLAS Pixel detector 4 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

The current ATLAS pixel sensors Inactive area 1.1 mm 5 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

The ATLAS long term upgrade  Physics reach for HL-LHC exp.: Higgs: BR, couplings, self-coupling WW, ZZ scattering W’, Z’, quark substructure…  Complete new tracker New layout: more pixel & strip layers, forward extension  Critical R&D Innermost pixel layer: Expected fluence  n eq /cm 2 Expected integrated dose  1 Grad At the HL-LHC: 3000 fb -1 in 10 years; L inst =5x10 34 cm -2 s -1 6 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Request on the new pixel sensors  Thin: reducing the material budget, coping with charge trapping  Cheap: large area to be instrumented – O(10 m 2 )  Efficient: very limited modules tiling in the innermost layers SLIM EDGE DETECTORS 7 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Slim edges: a primer Slim edges can be achieved by:  Geometry optimization N-on-p: Micron/Liverpool prototypes N-on-n: TU Dortmund/CiS  IBL Dead area ~ 200 μm Approved for IBL  Active edges  2 technologies 1.DRIE 2.SCP 8 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Deep Reactive Ion Etching: FBK-LPNHE Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 9 Joint FBK-LPNHE project  Goal: make the border a damage free ohmic contact How: DRIE as for 3D process – Trench doped by diffusion Target: intermediate layers (200 μm thick production) Pixel-to-trench distance as low as 100 μm 100 μm  GRs FEI4 sensor  trench

TCAD SIMULATIONS OF THE FBK- LPNHE EDGELESS PRODUCTION 10 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Normal work flow for a HEP silicon sensors Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 11 DesignProductionElectrical testIrradiation Charge collection studies Publish the results!

TCAD simulation work flow Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 12 Design a sensor Build the mesh Ramp up the bias Add rad damage effects Study the CCE Publish the results

Possible work flow for real sensors Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 13 DesignProductionElectrical testIrradiation Charge collection studies BROKEN SENSOR / POOR PERFORMANCE END OF THE STORY - $$$ LOST!

TCAD simulation work flow Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 14 Design a sensorBuild the mesh Ramp up the bias Add rad damage effects Study the CCE BAD RESULT? POOR PERFORMANCE?

TCAD simulation work flow Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 15 Re-design (a better) sensor Build the mesh Ramp up the bias Add rad damage effects Study the CCE BAD RESULT? POOR PERFORMANCE?

Silvaco TCAD packages & work flow Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 16 DEVEDIT / ATHENA Mesh fileATLAS Log file, Structure files Tonyplot DECKBUILD

Simulation studies for an edgeless production Goals of the simulation studies: Understand the operability of the device  BD voltage vs bias voltage  Optimization of: pixel-to-trench distance, # of GRs, GR relative position, etc Anticipate the sensor performance  Charge Collection Efficiency (CCE) at the sensor edge  Simulation of CCE with laser and MIPs  Of irradiated sensors too! Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 17

The simulated device Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 18 “Development of edgeless n-on-p planar pixel sensors for future ATLAS uprades” M. Bomben et al., Nuclear Science, Nuclear Instruments and Methods in Physics Research A 712 (2013) 41– μm 2 GRs Doped trench PIXEL High generation rate region

Devedit: device structure editor Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 19 Define implants, electrodes, oxidations, ecc using DEVEDIT Pixel implant

TCAD inputs Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 20 To get reliable predictions you need precise inputs; e.g. doping profiles via SIMS

Mesh file view with Tonyplot Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 21 Mesh structure

Optimization of the GRs design Various combinations of GR positions and their effect on BD Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 22 The closer the GR to the pixel the better 3D view of the electric potential

P-spray & field plate studied  Prefer low p-spray dose with FP Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 23 Field Plate, High dose p-spray No FP, High dose p-spray FP, Low dose p-spray Interpixel Capacitance fF/  m Substrate Voltage (V)

ATLAS: device simulation Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 24 ATLAS provides general capabilities for physically-based two (2D) and three- dimensional (3D) simulation of semiconductor devices. Typical simulation program structure 

IV curves of real sensors vs data DATASIMULATIONS  BD: Agreement within 20% or better 200 μm, 1 GR 2 GRs 3 GRs 5 GRs 25 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

IV curves after irradiation Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 26 α( ϕ =1x10 15 ) = 3.5x A/cm α( ϕ =2.5x10 15 ) = 4.9x A/cm  α: Agreement within 20% (annealing not taken into account) α =ΔI/V/ ϕ α WA = 3.9x A/cm α =ΔI/V/ ϕ α WA = 3.9x A/cm

Radiation damage effects Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 27 Implement radiation damage effects via traps in the forbidden gap

Radiation damage effects Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 28 Implement radiation damage effects via traps in the forbidden gap

Pennicard model validation Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 29 Irradiated (and annealed) n-on-p diodes DEPLETION VOLTAGE Simulation Data  1x10 15 n eq /cm 2 Data Simulations A lot of work for impact ionization models and interface traps and charges

Simulated charge collection efficiency studies Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay μm 4 MIP entry points 30 μm 250 μm 40 μm I have simulated the sensor with 100 μm between the trench and the pixel and no GRs Configurations: a)4 entry points b)4 bias voltages c)Before and after irradiation

Simulation of CCE studies with MIPs Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 31 SEU statement - specify: Entry & exit point Charge released per μm Then solution in the time domain SEU statement - specify: Entry & exit point Charge released per μm Then solution in the time domain

Unirradiated sensor, PIXEL region, 50 V 32 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Current peak for unirradiate, PIXEL reg., 50 V Expected Initial current ~ λ ( + ) = 6x10 -7 A (λ=80 e-/μm) All electrons collected All holes collected 33 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Signal at 50 V for unirradiated sensors Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 34

Signal at 50 V for unirradiated sensors (zoom) Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 35

CCE for unirradiated sensors Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 36 Already at 50 V complete charge collection, even at the edge

Collection time for unirradiated sensors Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 37 Already at 50 V short charge collection time, even at the edge

CCE for irradiated sensors Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 38 ϕ = 1 x n eq /cm 2 CCE TH = λ/d[1-e -d/λ ] ~ 67%* CCE TH = λ/d[1-e -d/λ ] ~ 67%* At 300 V CCE in excess of 50%, even at the edge * λ(1x10 15 n eq /cm 2 ) ≈ 240μm d = 200 μm (sensor thickness) * λ(1x10 15 n eq /cm 2 ) ≈ 240μm d = 200 μm (sensor thickness)

CONCLUSIONS & OUTLOOK Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 39

TCAD simulations for HL-LHC edgeless sensors The HL-LHC phase demands rad-hard pixel sensors, with limited inactive zones The LPNHE-FBK active edge n-on-p planar pixels are very good competitors for this challenge  The production was optimized thanks to TCAD simulations, which included studies ranging from the layout concept to the charge collection studies First comparisons with data confirm the validity of the simulation results  Future productions will benefit of 3D simulations Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 40

BACKUP Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 41

The ATLAS Inner Detector 42 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

The simulated device Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay 43

Deep Reactive Ion Etching: FBK-LPNHE Joint FBK-LPNHE project  Goal: make the border a damage free ohmic contact How: DRIE as for 3D process – Trench doped by diffusion Target: intermediate layers (200 μm thick production) Pixel-to-trench distance as low as 100 μm 4.5 μm wide 200 μm deep trench 44 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay

Carriers’ velocity 45 Marco Bomben - Simulation of edgeless pixels for HL-LHC - 17/06/2013, Journée simulations IN2P3 - IPNO, Orsay