1 2011. 1.12 Ryo Ichimiya et Yasuo Arai KEK/IPNS / Workshop.

Slides:



Advertisements
Similar presentations
PRAGUE November 2002 Monolithic Silicon Pixel Detectors in SOI Technology J. Marczewski, K. Domanski, P. Grabiec, M. Grodner,
Advertisements

Eija Tuominen Siena TEST BEAM RESULTS OF A LARGE AREA STRIP DETECTOR MADE ON HIGH RESISTIVITY CZOCHRALSKI SILICON Helsinki Institute of Physics,
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
CINCINNATI, FNAL, HAWAII, LBNL, PRINCETON, SLAC, VPI KEK, NAGOYA, NIIGATA, OSAKA,SAGA, TOHOKU, TOKYO, TMU, TSUKUBA Detector R&D.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
1 Irradiation Study of n-on-P Strip Sensors K. Hara, K. Inoue, A. Mochizuki (Univ. of Tsukuba) Y. Unno, S. Terada, T. Kohriki, Y. Ikegami (KEK) K. Yamamura,
Development of monolithic pixel sensors in Silicon On Insulator technology Serena Mattiazzo University of Padova (Italy) D. Bisello, P. Giubilato, D. Pantano.
Progress of SOI Pixel Detectors Sep. 9, Yasuo Arai, KEK 1.
Ryo Ichimiya (KEK/IPNS) on behalf of the SOIPIX collaboration 1 8 th International Meeting of Front-End Electronics (FEE2011),
Optional Reading: Pierret 4; Hu 3
CLIC Collaboration Working Meeting: Work packages November 3, 2011 R&D on Detectors for CLIC Beam Monitoring at LBNL and UCSC/SCIPP Marco Battaglia.
SOIPD 2009 SOIPD KEK-LBNL-Padova collaboration. SOIPD 2009 Silicon On Insulator (SOI) detectors SOI-2 (2008) 0.20um OKI FD-SOI technology 128  172 digital.
TRAPPISTE Tracking Particles for Physics Instrumentation in SOI Technology Prof. Eduardo Cortina, Lawrence Soung Yee Institut de recherche en mathématique.
SOI Pixel Detector : Present Status & Future Plans Super Belle Collb. Mtg Dec. 11, 2008 Yasuo Arai (KEK)
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
TCAD Simulation for SOI Pixel Detector
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
S. Mattiazzo 1,2, M. Battaglia 3,4, D. Bisello 1,2, D. Contarato 4, P. Denes 4, P. Giubilato 1,2,4, D. Pantano 1,2, N. Pozzobon 1,2, M. Tessaro 2, J. Wyss.
SOI pixel detector technology US-Japan collaboration Farah Khalid on behalf of ASIC Development Group SOIPIX collaboration people involved in SOIPIX: G.Deptuch,
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Foundry Characteristics
Silicon detector processing and technology: Part II
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
Test structures for the evaluation of TowerJazz 180 nm CMOS Imaging Sensor technology  ALICE ITS microelectronics team - CERN.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Monolithic Pixel R&D at LBNL M Battaglia UC Berkeley - LBNL Universite' Claude Bernard – IPN Lyon Monolithic Pixel Meeting CERN, November 25, 2008 An R&D.
Federico Faccio CERN/PH-MIC
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
M. Battaglia 1,2,3, D. Bisello 3, D. Contarato 2, P. Denes 2, P. Giubilato 1,3,4, S. Mattiazzo 3, D. Pantano 3, N. Pozzobon 3, S. Zalusky 1,4 1 University.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
Progress of SOI Pixel sensor R&D T. Tsuboyama (KEK) 1 Ottobre 2014.
TCAD Simulation for SOI Pixel Detectors October 31, 2006 Hirokazu Hayashi, Hirotaka Komatsubara (Oki Elec. Ind. Co.), Masashi Hazumi (KEK) for the SOIPIX.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Development of SOI Pixel Detectors Toshinobu Miyoshi - Institute of Particle and Nuclear Studies, KEK On behalf of SOI collaboration 1 VIPS Workshop.
Development of SOI pixel sensor 28 Sep., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group.
Selcuk Cihangir, Fermilab LCWS 2007, DESY 1 SOI, 3D and Laser Annealing for ILC S.Cihangir-Fermilab Representing Contributors from: Fermilab, Bergamo,
A thin fully-depleted monolithic pixel sensor in Silicon On Insulator technology Serena Mattiazzo INFN & University of Padova (Italy) M. Battaglia, UC.
Pixel Meeting Nov 7, Status Update on Sensors and 3D Introduction Laser Annealed HPK sensors MIT-LL thinned sensors SOI devices –OKI –ASI 3D assembly.
Performance test of the SOI pixel detector Hideki MIYAKE (Osaka University) for SOIPIX group Hideki MIYAKE (Osaka University) for SOIPIX group Oct.31,
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
Monolithic pixel detectors with 0.2  m FD-SOI pixel process technology Toshinobu Miyoshi on behalf of SOIPIX collaboration High Energy Accelerator Research.
10-12 April 2013, INFN-LNF, Frascati, Italy
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
R&D status of pixel sensors based on SOI technology
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Vertex Detector Overview Prototypes R&D Plans Summary.
Status of SOI Pixel Development
Status of SOI Pixel Mar. 18, PXD Mtg. Yasuo Arai (KEK)
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

Ryo Ichimiya et Yasuo Arai KEK/IPNS / Workshop on advanced detector technology for nuclear RIKEN SOI Pixel Détecteur

OUTLINE 1.Introduction of SOIPIX technology 2.Test Results 3.Issues & Solutions 4.Summary 1.Introduction of SOIPIX technology 2.Test Results 3.Issues & Solutions 4.Summary

KEK : Y. Unno, S. Terada, Y. Ikegami, T. Tsuboyama, T. Kohriki, Y. Ikemoto, T. Miyoshi, K. Tauchi, R. Ichimiya, Y. Fujita, D. Nio, A. Takeda Tsukuba Univ. : K. Hara, K. Shinsho Osaka Univ.: K. Hanagaki, J. Uchida Tohoku Univ. : Y. Onuki, Y. Horii, H. Yamamoto, Y. Sato, H. Katsurayama, Y. Ono Kyoto Univ. : T. Tsuru, H. Matsumoto, S. G. Ryu, S. Nakashima Kyoto U. of Education : R. Takashima JAXA/ISAS : H. Ikeda, D. Kobayashi, T. Wada, H. Nagata RIKEN(+SPring-8) : T. Hatsui, T. Kudo, A. Taketani. T. Kameshima, Y. Kirihara, M. Omodani, K. Kobayashi, S. Ono, T. Tatsumi LBNL : M. Battaglia, P. Denes, C. Vu, D. Contarato, P. Giubilato, L. Glesener FNAL : G. Deptuch, R. Yarema, M. Trimpl, R. Lipton, U. of Hawaii : G. Varner, M. Cooney, H. Hoedlmoser, H. Sahoo INP, Krakow : P. Kapusta, H. Palka INFN Padova : D. Bisello, S. Mattiazzo, D. Pantano Louvain-la-Neuve University : E. Cortina, E. Martin, L. Soungyee OKI Semiconductor (Miyagi) Co. Ltd. : K. Fukuda, I. Kurachi, M. Okihara, N. Kuriyama, H. Kasai.... KEK : Y. Unno, S. Terada, Y. Ikegami, T. Tsuboyama, T. Kohriki, Y. Ikemoto, T. Miyoshi, K. Tauchi, R. Ichimiya, Y. Fujita, D. Nio, A. Takeda Tsukuba Univ. : K. Hara, K. Shinsho Osaka Univ.: K. Hanagaki, J. Uchida Tohoku Univ. : Y. Onuki, Y. Horii, H. Yamamoto, Y. Sato, H. Katsurayama, Y. Ono Kyoto Univ. : T. Tsuru, H. Matsumoto, S. G. Ryu, S. Nakashima Kyoto U. of Education : R. Takashima JAXA/ISAS : H. Ikeda, D. Kobayashi, T. Wada, H. Nagata RIKEN(+SPring-8) : T. Hatsui, T. Kudo, A. Taketani. T. Kameshima, Y. Kirihara, M. Omodani, K. Kobayashi, S. Ono, T. Tatsumi LBNL : M. Battaglia, P. Denes, C. Vu, D. Contarato, P. Giubilato, L. Glesener FNAL : G. Deptuch, R. Yarema, M. Trimpl, R. Lipton, U. of Hawaii : G. Varner, M. Cooney, H. Hoedlmoser, H. Sahoo INP, Krakow : P. Kapusta, H. Palka INFN Padova : D. Bisello, S. Mattiazzo, D. Pantano Louvain-la-Neuve University : E. Cortina, E. Martin, L. Soungyee OKI Semiconductor (Miyagi) Co. Ltd. : K. Fukuda, I. Kurachi, M. Okihara, N. Kuriyama, H. Kasai.... SOI Pixel Collaboration 3

No mechanical bump bondings -> High Density(pitch Low parasitic Capacitance, High Sensitivity Fast signal and High resolution (Full Depletion: >200  m Si) Standard CMOS circuits can be built. Thin active Si layer (~40 nm) -> No Latch Up, Small SEE Cross section, larger LET threthold. Based on Industrial standard technology -> Fabricate in a commercial fabrication plant No mechanical bump bondings -> High Density(pitch Low parasitic Capacitance, High Sensitivity Fast signal and High resolution (Full Depletion: >200  m Si) Standard CMOS circuits can be built. Thin active Si layer (~40 nm) -> No Latch Up, Small SEE Cross section, larger LET threthold. Based on Industrial standard technology -> Fabricate in a commercial fabrication plant Monolithic detector using Bonded wafer (SOI : Silicon-on-Insulator) of Hi-R and Low-R Si layers. SOI Pixel Detector 4

OKI 0.2  m FD-SOI Pixel Process Process 0.2  m Low-Leakage Fully-Depleted SOI CMOS (OKI) 1 Poly, 4 (5) Metal layers, MIM Capacitor, DMOS option Core (I/O) Voltage = 1.8 (3.3) V SOI wafer Diameter: 200 mm , Top Si : Cz, ~18  -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz ~700  -cm (n-type), FZ: ~10k  -cm (n-type, p-type) up to 725  m thick BacksideThinned to 260  m and sputtered with Al (200 nm). An example of a SOI Pixel cross section 5 Depletion layer

1st Al p+ implant to Handle wafer & Metal contacts Copyright 2007 Oki Electric Industry Co.,Ltd Handle Wafer 6

MPW (Multi Project Wafer) run ~Twice per Year 7

88  -ray Integration Type Pixel (INTPIX) Size : 14  m x 14  m with CDS circuit Size : 14  m x 14  m with CDS circuit

9 Integration Type Pixel (INTPIX4) 10.2 mm 17x17  m, 512x832 (~430k ) pixels, 13 Analog Out, CDS circuit in each pixel. Largest Chip so far mm

10 X-ray imaging test for Integration Type Pixel (INTPIX4) A small dried sardine (“Niboshi” in Japanese) is used. Bias Voltage: 200V(Vback)Bias Voltage: 200V(Vback) 500 frame average500 frame average Integrating time: 250  sIntegrating time: 250  s X-ray tube(Mo): 20kV, 5mAX-ray tube(Mo): 20kV, 5mA INTPIX4 & NIBOSHI X- ray

115mm X-ray imaging test for Integration Type Pixel (INTPIX4) A small dried sardine (“Niboshi” in Japanese) is used. Bias Voltage: 200V(Vback)Bias Voltage: 200V(Vback) 500 frame avarage500 frame avarage Integrating time: 250  sIntegrating time: 250  s X-ray tube(Mo): 20kV, 5mAX-ray tube(Mo): 20kV, 5mA INTPIX4 & NIBOSHI

12 X-ray imaging test for Integration Type Pixel (INTPIX4) A small dried sardine (“Niboshi” in Japanese) is used. Bias Voltage: 200V(Vback)Bias Voltage: 200V(Vback) 500 frame avarage500 frame avarage Integrating time: 250  sIntegrating time: 250  s X-ray tube(Mo): 20kV, 5mAX-ray tube(Mo): 20kV, 5mA5mm5mm

X-ray imaging test for Integration Type Pixel (INTPIX4) A small dried sardine (“Niboshi” in Japanese) is used. Bias Voltage: 200V(Vback)Bias Voltage: 200V(Vback) 500 frame avarage500 frame avarage Integrating time: 250  sIntegrating time: 250  s X-ray tube(Mo): 20kV, 5mAX-ray tube(Mo): 20kV, 5mA5mm

X-ray Measurement with other SOI pixel 14 High Resolution Good Energy Measurement 20 lp/mm

Counting Type Pixel (CNTPIX5) 5 x15.4 mm 2 72 x 212 pixels 64um x 64 um pixel 5 x15.4 mm 2 72 x 212 pixels 64um x 64 um pixel Energy selection and Counting in each pixel Time Resolved Imaging 9bit x 8 15 Same architecture with HEP/NP pixels -> We are developing a prototype for next Belle II detector (SBPIX1). Same architecture with HEP/NP pixels -> We are developing a prototype for next Belle II detector (SBPIX1).

CNTPIX5 Pixel Layout 64x64 um 2 ~600 Tr/pix x 72 x 212 = 10,000,000 Trs 16

17 SOI Pixel Issues & Solutions a.Back Gate Effect : Sensor voltage affect Tr. characteristics  Buried P-Well (BPW) layer b.Wafer Thinning : Thin Sensor  TAIKO process c.Cross Talk & Radiation Hardness : Additional Shield layer  Double SOI Wafer d.Higher Circuit Density : Vertical (3D) Integration e.Thicker depletion layer : FZ wafer and back-side process f.Radiation tolerance: SEE immunity structure, BOX for TID  Double SOI Wafer a.Back Gate Effect : Sensor voltage affect Tr. characteristics  Buried P-Well (BPW) layer b.Wafer Thinning : Thin Sensor  TAIKO process c.Cross Talk & Radiation Hardness : Additional Shield layer  Double SOI Wafer d.Higher Circuit Density : Vertical (3D) Integration e.Thicker depletion layer : FZ wafer and back-side process f.Radiation tolerance: SEE immunity structure, BOX for TID  Double SOI Wafer

a. Back Gate Effect Front Gate and Back Gate are coupled. (Back Gate Effect) Front Gate and Back Gate are coupled. (Back Gate Effect) 18 Vg_back

BPW Implantation Suppress the back gate effect. Shrink pixel size without loosing sensitive area. Increase break down voltage with low dose region. Less electric field in the BOX which may improve radiation hardness. Suppress the back gate effect. Shrink pixel size without loosing sensitive area. Increase break down voltage with low dose region. Less electric field in the BOX which may improve radiation hardness. BPW P+ SOI Si Buried Oxide (BOX) Cut Top Si and BOX High Dose Cut Top Si and BOX High Dose Keep Top Si not affected Low Dose Keep Top Si not affected Low Dose Substrate Implantation PixelPeripheral Buried p-Well (BPW) 19

I d -V g and BPW w/o BPW with BPW=0V NMOS Back gate effect is suppressed by the BPW. shift back channel open 20

21 b. Wafer Thinning :TAIKO process Thinned to ~30um. Back side process still can be done after thinning. Thinned to ~30um. Back side process still can be done after thinning.

22 I-V Characteristic Before & After Thinning No difference seen after thinning. Normal operation confirmed. No difference seen after thinning. Normal operation confirmed. Thinned to 110 um and diced

23 additional conduction layer sensor circuit Increase radiation hardness by compensating Oxide/Interface Trap charge with middle layer bias. This also reduce cross talk between circuit and sensor Increase radiation hardness by compensating Oxide/Interface Trap charge with middle layer bias. This also reduce cross talk between circuit and sensor c. Double SOI Layer wafer under preparation

24 T-micro + OKI Semi + KEK/LBNL/Fermilab d. Vertical (3D) Integration Two chips are bonded with  -bump technology (~5 um pitch) of T-micro Co.

25

26

27 FZ wafer of 260um is fully e. Wafer Resistivity : FZ SOI Wafer CZ wafer: 700 Ω cm FZ wafer: 10KΩ cm CZ wafer: 700 Ω cm FZ wafer: 10KΩ cm

28 SOI is Immune to Single Event Effect +- +- +- +- +- +- +- +- +- +- +- Bulk Device Gate Gate Oxide Si +- +- +- +- SOI Device Gate +- +- +- Si Buried Oxide Depletion Layer 28 But not necessary strong to Total Ionization Dose due to thick BOX layer Gate Si Buried Oxide +++++ Trapped Holes f. Radiation Tolerance

29 Leak Current and V Th resumes to nearly original value by biasing back side even after 100Mrad. before irradiation Vback= V p/cm 2 (~100 Mrad) p/cm 2 (~100 Mrad) Total Ionization Dose effect can be compensated by back bias f. Radiation Tolerance Double SOI may be a solution to compensate the TID effect.

30 Summary We could confirm basic performance of a new monolithic pixel detector technology, SOI Pixel. SOIPIX can be very thin detector with active circuit in each pixel. Main issue to realize the SOI pixel, back-gate effect, has been solved by Buried P-Well. Wafer was successfully thinned to 100 um with TAIKO process, and it is possible to thin down to ~30 um. SOIPIX is immune to the single event effect, and Total Ionization effect can be compensated by back side bias (Double SOI wafer). Vertical (3D) Integration R&D is on-going to increase integration level. With FZ wafer, thicker depletion layer achieved with lower bias voltage.

31 Supplement

KEK-OKI semi SOI Brief History '05. 7: Start Collaboration with OKI Semiconductor. '05.10: First Submission in VDEC 0.15 um MPW. '06.12: 1 st (and last) 0.15 um KEK MPW run. '07.3: 0.15 um lab. process line was closed. --> move to 0.2 um mass production line. '08.1: 1 st KEK SOI-MPW run. '09.2: 2 nd KEK SOI-MPW run. '09.8: 3 rd KEK SOI-MPW run. '10.1: 4 th KEK SOI-MPW run. '10.8: 5 th KEK SOI-MPW run. '11.1: 6 th KEK SOI-MPW run '05. 7: Start Collaboration with OKI Semiconductor. '05.10: First Submission in VDEC 0.15 um MPW. '06.12: 1 st (and last) 0.15 um KEK MPW run. '07.3: 0.15 um lab. process line was closed. --> move to 0.2 um mass production line. '08.1: 1 st KEK SOI-MPW run. '09.2: 2 nd KEK SOI-MPW run. '09.8: 3 rd KEK SOI-MPW run. '10.1: 4 th KEK SOI-MPW run. '10.8: 5 th KEK SOI-MPW run. '11.1: 6 th KEK SOI-MPW run 32

Readout system for SOIPIX We have developed a Ethernet-based (SiTCP) DAQ board for SOIPIX, named SEABAS (SOI EvAluation BoArd with Sitcp).We have developed a Ethernet-based (SiTCP) DAQ board for SOIPIX, named SEABAS (SOI EvAluation BoArd with Sitcp). Portable DAQ system; same software with Linux, Windows, Apple, etc.Portable DAQ system; same software with Linux, Windows, Apple, etc. 33 INTPIX4INTPIX4 Sub Board for INTPIX4 SEABASSEABAS DataTransfer Data Transfer by Ethernet ADC & DAC USERFPGAUSERFPGA 300mm300mm Bias Voltage inlet LV inlet

 -bumps fabrication 34 Copyright 2009 OKI semiconductor Co. Ltd. Minimum pitch: 5um T-Micro

LBNL 35

36 Energy Resolution 109Cd 22keV FWHM~7% Noise ~ 170e-

37 Infrared Laser (1064 nm) Response of Thinned Chip Full Depleted around 100V b. Wafer Thinning :TAIKO process

38 d. Nested BNW/BPW Structure Structure developed in cooperation between G. Deptuch (Fermilab) and I. Kurachi (OKI Semi) Signal is collected with the deep Buried P-well. Back gate and Cross Talk are shielded with the Buried N-well. Test chip is under process. Signal is collected with the deep Buried P-well. Back gate and Cross Talk are shielded with the Buried N-well. Test chip is under process. implant

39 Impurity Concentration

40 Before OxidationConventional SOI Process Improved SOI Process e. Wafer Resistivity : FZ SOI Wafer During the conventional SOI process, many slips were generated in the 8’’ FZ-SOI wafer. We optimized the process parameters, and succeeded to perform the process without creating many slips. Slips