Shape coexistence in the neutron-deficient, even-even 182-188 Hg isotopes Katarzyna Wrzosek – Lipska, Nick Bree (KU Leuven)  Motivation  Experimental.

Slides:



Advertisements
Similar presentations
Measuring octupole collectivity in 221 Rn using Coulomb excitation at MINIBALL, & SPEDE George O’Neill.
Advertisements

Shape coexistence in exotic nuclei studied by low energy coulomb excitation Emmanuel Clément CERN-PH, Geneva.
Coulomb excitation with radioactive ion beams
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
March 1, 2013GRETINA workshop Coulomb excitation of even Ru and Mo isotopes Juho Rissanen Nuclear Structure Group, Lawrence Berkeley.
MINIBALL g-ray Spectroscopy far from Stability
University of Liverpool
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
The evolution of nuclear structure in light osmium isotopes; gamma ray spectroscopy of 163 Os and 165 Os Mark Drummond.
Latest results from MINIBALL at REX‐ISOLDE
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
On octupole nuclei and the status of SPEDE
UNIVERSITY OF JYVÄSKYLÄ Lifetime measurements probing triple shape coexistence in 175 Au Tuomas Grahn Department of Physics University of Jyväskylä The.
UNIVERSITY OF JYVÄSKYLÄ Results from the first tests with the SPEDE spectrometer Philippos Papadakis ISOLDE Workshop and Users Meeting 2014.
Nele Kesteloot1,2 On behalf of the IS452/IS479 collaboration
EWON Workshop, Prague, May 2007 GOSIA as a tool for COULEX on exotic beams Katarzyna Wrzosek Heavy Ion Laboratory Warsaw University.
Wolfram KORTEN 1 Euroschool Leuven – Septemberi 2009 Coulomb excitation with radioactive ion beams Motivation and introductionMotivation and introduction.
Status Report on Decay Spectroscopy and In-Source Laser Spectroscopy on Heavy Nuclei at ISOLDE Piet Van Duppen ISOLDE CERN, Switzerland IKS-K.U.Leuven,
Windmill Collaboration Status Report on Studies in the Lead Region Addenda IS456/IS534 Andrei Andreyev University of York, UK and JAEA, Tokai, Japan on.
Shell Model based deformation analysis of light Cadmium isotopes T. Schmidt 1, A. Blazhev 1, K. Heyde 2, J. Jolie 1 1 Institut für Kernphysik, Universität.
Paul Greenlees, Department of Physics, University of Jyväskylä, FinlandENAM’04, Callaway Gardens, Sept04 In-beam and decay spectroscopy of transfermium.
1 In-Beam Observables Rauno Julin Department of Physics University of Jyväskylä JYFL Finland.
Shape Evolution and Shape Coexistence in Neutron Rich A~100 Nuclei
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
Quadrupole collectivity in neutron-rich Cd isotopes Thorsten Kröll for the IS411/IS477/IS524 collaborations Work supported by BMBF (Nr. 06DA9036I and 05P12RDCIA),
W. Korten Nuclear collectivity and shape evolution in exotic nuclei Wolfram KORTEN CEA Saclay DSM/IRFU/SPhN.
1 Andreas Görgen Atelier ESNT Nuclear Shapes, Shape Coexistence, and Electromagnetic Moments An Experimentalist’s Perspective on the Interaction.
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
Experimental measurement of the deformation through the electromagnetic probe Shape coexistence in exotic Kr isotopes. Shape coexistence in exotic Kr isotopes.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
James Cubiss University of York On behalf of the IS534, Sep 2014 collaboration Hyperfine structure studies of At isotopes using in-source.
Title page J Van de Walle 1, I. Stefanescu 1, P Mayet 1, O Ivanov 1, F Aksouh 1, D Smirnov 1, JC Thomas 1, R Raabe 1, M Huyse 1, P Van Duppen 1 1 IKS KULeuven.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
Recoil-beta tagging David Jenkins. Odd-odd N=Z Fascinating laboratory for studying interplay of T=0 and T=1 states Very unusual low level density for.
Dipa Bandyopadhyay University of York
UNIVERSITY OF JYVÄSKYLÄ Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of 208 Po and 210,212 Rn Addendum.
Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth.
I. I.4. T HE R EGION A=100, N=60 N E U T R O N S PHERICAL - LIKE W ELL D EFORMED Neutron Rich side What are the origins of the development of deformation?
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
A HIE-ISOLDE spectrometer for nuclear reaction studies G. Tveten 1, J. Cederkall 2, S. Siem 1, A. Goergen 1, M. Guttormsen 1, P. Hoff 1, D. Di Julio 2,
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Nuclear shape evolution through lifetime measurement in neutron rich nuclei Lucie Grente Colloque GANIL 2013 CEA Saclay, France DSM/IRFU/SPhN September.
In-source laser spectroscopy of Pb, Bi and Po isotopes at ISOLDE Charge Radii around Z = 82 and N = 104 In-source resonant photoionization spectroscopy.
Status of Miniball/TREX and plans for the experimental program in 2016 Updated physics case Summary REX-ISOLDE aera Re-Installation at HIE-ISOLDE beam.
Detection of X rays in the Neutron-Deficient Polonium Coulomb Excitation Experiments Nele Kesteloot IKS KU Leuven SCK CEN.
Coulomb excitation of the two proton-hole nucleus 206 Hg CERN-ISOLDE, Geneva, Switzerland (M. Kowalska, E. Rapisarda, T. Stora, F.J.C. Wenander) GSI, Darmstadt,
Pear-shaped nuclei measured via Coulomb excitation at REX- ISOLDE Liam P. Gaffney EuNPC2015 University of the West of Scotland, UK University of Liverpool,
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Addendum to IS587: Characterising excited states in and around the semi-magic nucleus 68 Ni using Coulomb excitation and one-neutron transfer Spokespersons:
Coulomb excitation of Coulomb excitation of doubly magic 132 Sn with MINIBALL at HIE-ISOLDE P. Reiter 1, D. Rosiak 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev.
HIE-ISOLDE experiments workshop
of very neutron deficient heavy nuclei
In-source laser spectroscopy of mercury isotopes (P-424)
Georgi Georgiev CSNSM, Orsay, France
CERN-ISOLDE (J. Cederkäll, P. Delahaye, D. Voulot, L. Fraile, F
oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization
P-347 Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation Addendum Peter Butler, David Joss and Marcus Scheck on behalf.
Shape coexistence measurements in even-even neutron-deficient Polonium isotopes by Coulomb excitation, using REX-ISOLDE and the Ge MINIBALL array Proposal.
Coulex Analysis Code – GOSIA: Current Status of Development
Coulomb Excitation of Neutron-rich
Emmanuel Clément IN2P3/GANIL – Caen France
Characterising excited states in and around the semi-magic nucleus 68Ni using Coulomb excitation and one-neutron transfer L. P. Gaffney1, F. Flavigny1,
Maria Kmiecik, Giovanna Benzoni, Daisuke Suzuki
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
Presentation transcript:

Shape coexistence in the neutron-deficient, even-even Hg isotopes Katarzyna Wrzosek – Lipska, Nick Bree (KU Leuven)  Motivation  Experimental technique  Coulex analysis  Results  Two-state mixing calculations  Conclusions Annual Brix IAP workshop 2013

Shape coexistence in the light Hg isotopes Degree of mixing ? Type of deformation: weakly oblate – spherical – prolate ? → Coulomb excitation Hg 182 Hg N=104N=206 ‘spherical-weak oblate’ ‘deformed (prolate)’ 184 Hg β 2 ≈-0.15 (2h)β 2 ≈+0.25 (4p-6h)  S. Frauendorf Phys.Lett. B 55 (1975) 365  W. Nazarewicz et al. Phys.Lett.B 305 (1993) 195  M. Bender, P.-H. Heneen, P.-G. Reinhard Rev. of Mod. Phys. 75 (2003) 121  K. Heyde and J. Wood Rev. of Mod. Phys. 83 (2011) 1467 Z=82 J. Elseviers et al. PR C 84 (2011)

Miniball θrθr EPEP DSSSD-detector (LAB: ) 182 Hg 2.85 MeV/u target 112 Cd 2 mg/cm 2 Coulomb excitation of 182,184,186, MeV/A θpθp IsotopeSummer 2007Summer Hg4.9 x 10 3 pps 184 Hg1.0 x 10 3 pps1.0 x 10 5 pps 186 Hg2.0 x 10 5 pps2.5 x 10 5 pps 188 Hg2.5 x 10 5 pps3.1 x 10 5 pps Target 112 Cd 112 Cd, 107 Ag, 120 Sn 114 Cd, 107 Ag, 120 Sn 107 Ag, 120 Sn 112 Cd 182 Hg Energy [MeV] Annular strip no. θ

Observed gamma ray yields Summer of 2008: 182 MeV/u on 112 Cd target 182 Hg → → → Cd (2 + 1 → ) the K α and K β X rays originating from mercury. in prompt coincidence with a particle Doppler broadened conversion from the observed transitions cannot explain the amount of X rays : N total = 1017(51) N conv = 167(13) N K-vacancy = 129(30) → N left = 721 (60) remaining E0 X rays attributed to the converted → transition and the E0 (0 + 2 → ) deexcitation E0 231 (74)490 (95) Method: N.Bree 2010

Observed gamma ray yields Summer of 2008: 182 MeV/u on 112 Cd target 182 Hg → → → Cd (2 + 1 → ) mixing between different states → strongly converted → transitions: (E. Rapisarda,  decay studies of 182,184 Tl isotopes) 184 Hg: α CE (2 + 2 → ) = 23(5) 182 Hg: α CE (2 + 2 → ) = 4.2(8) E0 E2/M1 E0 GOSIA code, Q s (2 + ) in Hg Combined analysis of the Coulex data + τ measurements RDDS measurements at Jyvaskyla and ANL (L. Gaffney, M. Hackstein, T. Grahn, A. Petts) + BR and α CE (2 + 2 → ) (E. Rapisarda) 42(2) ps 37(1) ps PhD thesis of N.Bree

Results – E2 matrix elements 2.7(2)1.6(2) 0.60(3) -3.71(6) 1.29(-3; +4) -2.65(15) 1.25(5) -3.14(8) 5.30(44) 1.27(25) -0.89(14) -0.21(2) 1.22(-7; +10) (-0.08; +0.08) -3.5(12) 4.1(-4; +10) -2.7(2) 2.85(6) 3.05(-2;+25) 1.31(1) 2.07(8) 182 Hg 184 Hg 186 Hg 188 Hg PhD thesis of N.Bree

Quadrupole deformation parameters in Hg Overall deformation ~ β ~ : Triaxiality ~ γ ~ : Quadrupole Sum Rules - relate experimental ME2’s with quadrupole deformation parameters (D. Cline, Ann Rev Nucl Part Sci 36 (1986) 683, K. Kumar, Phys. Rev. Lett. 28 (1972) 249) ~ BE2(2 + i → 0 + 1,2 ) ~ magnitudes and relative signs of,, Q sp (2 + ) A Hg in a good agreement with the Isotope Shift measurements (G. Ulm et al., Z. Phys. A 325 (1986) 247) triaxiality

G.J. Lane et al., NPA 589 (1995) 129 P. J. Brussaard, P.W.M. Glaudemans 1977 |0 + 1 > = α 0 |0 + S > + β 0 |0 + D > |2 + 1 > = α 2 |2 + S > + β 2 |2 + D > 0+S0+S 2+S2+S 0+D0+D 2+D2+D |0 + 2 > = β 0 |0 + S > - α 0 |0 + D > |2 + 2 > = -β 2 |2 + S > + α 2 |2 + D > Two-state mixing model un-mixed mixed A C > 0 D < 0 B Experimental E2 matrix elements can be expressed by:  un-mixed E2 matrix elements (A,B, C, D)  mixing amplitudes (α 0, α 2, β 0, β 2 ) = 0 α J 2 + β J 2 = 1

Mixing amplitudes  0 + states remains un-mixed for all Hg  2 + states: mixing is changing from 29% up to 98%  4 + states remains deformed for all Hg Deduced from the two-band mixing calculations by fitting higher-lying levels using the variable moment of inertia (VMI) model (R. Page): 182 Hg 184 Hg 186 Hg 188 Hg

182 Hg: α 2 2 = 29% 184 Hg: α 2 2 = 51% 186 Hg: α 2 2 = 90% 188 Hg: α 2 2 = 98% α 4 2 = 3% α 4 2 = 4% α 4 2 = 7% α 4 2 = 20% → → → → → → → → → → → → → → → → → → →0 + 1 fitted un-mixed ME2’s: A = = 1.2 eb B = = 3.3 eb C = = 1.8 eb D = = -4.0 eb →2 + 1

Un-mixed matrix elements: BMF ↔ VMI ↔ RDDS BMF P.-H. Heenen, M. Bender, Y. M. Yao VMI 5.43(22) 6.29(33) 7.17(90) RDDS T. Grahn et al., PRC 80, (2009). 182 Hg ME2 [eb]

Conclusions  E2 matrix elements connecting low-lying 0 + 1,2, 2 + 1,2,3, 4 + 1,2 states in Hg were determined.  Quadrupole deformation parameters of the 0 + states extracted for a first time:  0 + ground state weakly deformed (β≈0.15) and of oblate nature  0 + excited state more deformed, triaxiality not excluded  Experimental results can be interpreted within the two-state mixing model:  magnitudes and signs of E2 matrix elements reproduced for 182,186,188 Hg;  properties of the state in all Hg can be fully explained by different mixing amplitudes; continuation of the shape-coexistence studies in the n-deficient Hg HIE-ISOLDE → accepted proposal for 182,184 Hg Future plans:

KU Leuven, Belgium P. Van Duppen, M. Huyse, N. Bree, K. Wrzosek-Lipska, N. Kesteloot, L. Gaffney, H. De Witte University of Jyväskylä, Helsinki Institute of Physics, Finland J. Pakarinen, P. T. Greenlees, T. Grahn, P. Rahkila University of Liverpool, U.K. D.T. Joss, P. A. Butler, R. D. Page, G. O’Neil, P. Papadakis University of York, U.K. D.G. Jenkins, A. N. Andreyev CERN-ISOLDE, Switzerland E. Rapisarda, D. Voulot, F. Wenander University of Manchester, U.K. T. E. Cocolios, S. Freeman TU-München, Germany V. Bildstein, R. Gernhäuser, R. Krücken, K. Nowak, D. Mücher TU-Darmstadt, Germany Th. Kröll, M. Scheck, N. Pietralla University of Oslo, Norway A. Goergen, M. Guttormsen, A.C. Larsen, S. Siem CEA-Saclay, France W. Korten, M. Zielinska, M.-D. Salsac, T. Duguet, F. Dechery HIL University of Warsaw, Poland P. J. Napiorkowski, J. Srebrny, K. Hadynska-Klek, L. Prochniak University of Köln, Germany A. Blazhev, J. Jolie, N. Warr, P. Reiter, H. Duckwitz University of Ioannina, Greece N. Patronis Atlanta, U.S.A J. L. Wood U. Gent, Belgium K. Heyde Université Libre de Bruxelles, Belgium P.-H. Heenen CEN, Bordeaux-Gradignan, France M. Bender University of Huelva, Spain J.-E. Garcia Ramos GANIL, France E. Clement, B. Bastin

Extra slides

Low-energy part of the Coulomb excited level scheme of Hg

E0 known BR (new decay data) unobserved transitions 184 Hg 36.3 (27) ps 30.9 (11) ps 8.9 (11) ps mean lifetimes, average values: RDDS and Rud et. al (Phys. Rev. Let. 31 (1421) 1973)  CE (2 2 +  ) = 23 (5)

Experimental campaigns 2008: 2.85 Mev/A on 112 Cd target Hg 184 Hg

Determination of the quadrupole moment of the first excited 2 + state Cd 182 Hg Energy [MeV] Annular strip no. Coulomb excitation of 182 Hg on 112 Cd target Coulex cross-section depends on both and 0+0+ Scanning the c.m. range by gating on different strips! DSSD Q>0 Q=0 Q<0

Matrix elements [eb] 182Hg184Hg186Hg188Hg 1.29 (3; 4) 1.27 (5) 1.22 (7; 10)1.31 (1) (6) (8) -2.7 (18)2.07 (8) 0.60 (3) (2) (-0.08 ; +0.08) (15) -3.5 (12) 2.3 (5; 69) 1.63 (22; 19) 1.27 (25) 4.2 (6; 13) 2.74 (23; 18) (14) (-2.8; +1.9) 2.9 (2; 3) 5.30 (44) 4.1 (4; 10) 5.1 (2; 3) 4.9 (4) 4.9 (5; 14) -0.1 (13; 12) 1.4 (12; 18) -2.7 (22; 48)1.0 (4; 6) 1.2 (7; 12) -2.6 (20) 3.8 (8) 2.85 (6) 8.0 (16) 3.05 (17; 25) |1.1| (3) 0.9 (3)

Overall deformation ~ β ~ : Triaxiality ~ γ ~ : Qudrupole sum rules invariants: and Parametrization of the E2 operator

J. Srebrny, K. Pomorski, D. Cline et al., Nuclear Physics A 766 (2006) 25–51

Two-state mixing model Unperturbated: C >0 |0 + 1 > = α 0 |0 + S > + β 0 |0 + D > |0 + 2 > = β 0 |0 + S > - α 0 |0 + D > |2 + 1 > = α 2 |2 + S > + β 2 |2 + D > |2 + 2 > = -β 2 |2 + S > + α 2 |2 + D > = = = 0 Assumption: = α 0 α 2 A + β 0 β 2 B = -α 0 β 2 A + β 0 α 2 B = α 2 β 0 A - α 0 β 2 B = -β 0 β 2 A - α 0 α 2 B = α 2 β 2 (D-C) < 0 = α 2 2 C + β 2 2 D = β 2 2 C + α 2 2 D α β 2 2 = 1 α β 0 2 = 1 0+S0+S 2+S2+S 2+D2+D 0+D0+D A B D < 0 spherical deformed 0+S0+S 2+S2+S 2+D2+D 0+D0+D A C >0 B D < 0 spherical deformed |0 + 1 > = α 0 |0 + S > + β 0 |0 + D > |0 + 2 > = β 0 |0 + S > - α 0 |0 + D > |2 + 1 > = α 2 |2 + S > + β 2 |2 + D > |2 + 2 > = β 2 |2 + S > - α 2 |2 + D > = α 0 α 2 A + β 0 β 2 B = α 0 β 2 A - β 0 α 2 B = α 2 β 0 A - α 0 β 2 B = β 0 β 2 A + α 0 α 2 B = α 2 β 2 (C-D) > 0 = α 2 2 C + β 2 2 D = β 2 2 C + α 2 2 D α β 2 2 = 1 α β 0 2 = 1 Mixing IMixing II α 2 < β 2 & α 2 2 < 50%α 2 > β 2 & α 2 2 > 50%

α02α02 α22α22 α42α42 R.PageJ. D. Richards R.PageJ. D. Richards R.PageJ. D. Richards 182 Hg92%93%29%24.4%3%0.2% 184 Hg95%94.6%51%49%4%2.4% 186 Hg98%97%90%92%7%7.4% Mixing amplitudes 188 Hg99%98%20% deduced from the two-band mixing calculations: 1.fitting higher-lying levels following VMI model (R. Page) 2.study the fine structure in the alpha decay (J. D. Richards, PRC 56 (1997) 1389)

Un-mixed matrix elements: BMF vs VMI BMF P.-H. Heenen, M. Bender VMI rot 182 Hg ME2 [eb] rot

obl obl BMF rot. model 186 Hg

ME2 (0 + D →2 + D ) 182 Hg 184 Hg 186 Hgaverage BMF fit to → eb2.95 eb2.75 eb2.93 eb BMF fit to → eb3.05 eb2.83 eb3.01 eb τ (6 + 1 )2.54 eb2.47 eb2.15 eb2.50 eb τ (8 + 1 )2.66 eb2.42 eb1.97 eb2.35 eb ME2 (0 + S →2 + S ) 182 Hg 184 Hg 186 Hgaverage BMF fit to → eb1.97 eb1.95 eb1.93 eb BMF fit to → eb2.26 eb2.15 eb2.32 eb

HIE-ISOLDE experiment – counting rates / shift E0