A Low Mass H 2 Component to the AU Microscopii Circumstellar Disk Kevin France – CITA/U Toronto Aki Roberge – GSFC Roxana Lupu – JHU Seth Redfield – U.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Accretion and Variability in T Tauri Disks James Muzerolle.
Subaru/Gemini MIR Observations of Warm Debris Disks Hideaki Fujiwara (Subaru Telescope) 1 Collaborators: T. Onaka (U. Tokyo), D. Ishihara (Nagoya U.),
Evolution of Gas in Disks Joan Najita National Optical Astronomy Observatory Steve Strom John Carr Al Glassgold.
Ge/Ay133 What can transit observations tell us about (exo)-planetary science? Part II – “Spectroscopy” & Atmospheric Composition/Dynamics Kudos to Heather.
Buried AGNs in nearby ULIRGs Masa Imanishi (National Astronomical Observatory of Japan)
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
Are Planets in Unresolved Candidates of Debris Disks Stars? R. de la Reza (1), C. Chavero (1), C.A.O. Torres (2) & E. Jilinski (1) ( 1) Observatorio Nacional.
Are Planets in Unresolved Candidates of Debris disks stars? R. de la Reza (1), C. Chavero (1), C.A.O. Torres (2) & E. Jilinski (1) (1) Observatorio Nacional.
Dust Dynamics in Debris Gaseous Disks Taku Takeuchi (Kobe Univ., Japan) 1.Dynamics of Dust - gas drag - radiation 2. Estimate of Gas Mass 3. Dust Disk.
Lyα Pumped Molecular Hydrogen Emission in the Planetary Nebulae NGC 6853 and NGC 3132 R.E. Lupu, K. France and S.R. McCandliss Johns Hopkins University,
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
9/19/2014 Claus Leitherer: Lyman Continuum Leakage 1 Lyman Continuum Leakage in the Local Universe Claus Sanch Tim Janice Sally Roderik Leitherer Borthakur.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Spitzer Space Telescope Observations of the Fomalhaut Debris Disk Michael Werner, Karl Stapelfeldt, Chas Beichman (JPL); Kate Su, George Rieke, John Stansberry,
Excesos IR F   Discos “flared ”
A Summary of Results from Nulling Interferometry W. Liu, P. Hinz, W. Hoffmann, and the MMT Adaptive Optics Group Steward Observatory, University of Arizona.
9/7/04Claus Leitherer: A Far-UV View1 Claus Leitherer (STScI) A Far-Ultraviolet View of Starburst Galaxies Claus Leitherer (STScI)
Comparison of Photometric And Spectroscopic Redshifts.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Gas in Transitional Disks Sean Brittain Clemson University, Clemson, SC, USA Joan Najita National Optical Astronomy Observatory, Tucson, AZ, USA 5 th Planet.
Planet Formation through Radio Eyes A. Meredith Hughes Wesleyan University Kevin Flaherty (Wesleyan), Amy Steele (Wesleyan), Jesse Lieman-Sifry (Wesleyan),
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Resonance Line Scattering in the  Pic Disk: Disks in Star and Planet Formation, Cumberland Lodge, July 16-19, Resonance Line Scattering in the.
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Photoevaporative Mass Loss From Hot Jupiters Ruth Murray-Clay Eugene Chiang UC Berkeley.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Antimatter in our Galaxy unveiled by INTEGRAL
Molecules around AE Aurigae Patrick Boissé, IAP Collaborators oAndersson BG. oGalazutdinov G. oFederman S. oGerin M. oGry C. oHilly-Blant P. oKrelowski.
C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.
Gaspard Duchêne UC Berkeley & Obs. Grenoble From circumstellar disks to planetary systems – Garching – Nov
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,
Ge/Ay133 Can we study extrasolar Kuiper Belts?  Pic, A5V star AU Mic, M1Ve star.
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
Submillimeter Observations of Debris Disks Wayne Holland UK Astronomy Technology Centre, Royal Observatory Edinburgh With Jane Greaves, Mark Wyatt, Bill.
High Dynamic Range Imaging and Spectroscopy of Circumstellar Disks Alycia Weinberger (Carnegie Institution of Washington) With lots of input from: Aki.
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
Spitzer Constraints on Primordial and Debris Disk Evolution John Carpenter on behalf of the FEPS collaboration D. Backman (NASA-Ames) S. Beckwith (STScI)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Debris Disks - LBTI Phil Hinz University of Arizona.
Kate Su, George Rieke, Karl Misselt, John Stansberry, Amaya Moro-Martin, David Trilling… etc. (U. of A) Karl Stapelfeldt, Michael Werner (NASA JPL) Mark.
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Young planetary systems
Excitation of H2 in NGC 253 Marissa Rosenberg
The HR 4796A, Fomalhaut, & HD Narrow Planet-Building Ring Systems
Gas! Very few debris disks have detected gas, and it is generally only found around the youngest systems. So why should we consider gas here?
Mario van den Ancker – ESO Garching
9-10 Aprile Osservatorio Astronomico di Capodimonte
Ge/Ay133 Can we study extrasolar Kuiper Belts?
Young Vega and Altair Analogs: Rotationally-
New Debris Disks With Spitzer Space Telescope
Identifying the Key Factors in the Planet Formation Process
The origin of gas in debris disks
Debris disks Basic properties Observational methods & constraints
Young Vega and Altair Analogs: Rotationally-
Presentation transcript:

A Low Mass H 2 Component to the AU Microscopii Circumstellar Disk Kevin France – CITA/U Toronto Aki Roberge – GSFC Roxana Lupu – JHU Seth Redfield – U Texas/Hubble Paul Feldman – JHU

Circumstellar Material 850  m dust emission Vega F disk Aumann et al. 84 Heap et al. 00 Holland et al. 98 Fomalhaut Vega  Pic Optical scattered light

Dust in Circumstellar Disks J-band coronagraphy Liu et al. 04  Pic Fomalhaut Kalas et al. 05 Beuzit/Mouillet et al. 97 AU Mic

H 2 H 2 and Dust in Circumstellar Disks Thi et al. 01 (  m) Roberge et al. 00  Pic CO AB Aur  Pic Gas in circumstellar disks has been a subject of debate. Gas to form planets vs. dissipation timescale Roberge et al. 01, Lecavelier des Etangs 01

Debris disk: AU Microscopii M1 V flare star d=10 pc Disk discovered in scattered light 850  m SCUBA Polarization map Kalas et al. 04 Liu et al. 04 Graham et al. 07 Krist et al., 05 ACS

Graham et al. 07 Roberge et al., 05 ACS Presence of dust well-established, detection of gas has been elusive CO and H 2 non- detections From CO: N(H 2 ) < 6.3 x cm -2 UV Absorption: N(H 2 ) < 1.7 x cm -2 Liu et al., 04 Roberge et al., 05 AU Mic

Far-UV Fluorescent H 2 Emission Lines in AU Mic Detected by FUSE

Weak H 2 emission lines detected (2 – 3  ) Upper level populated by coincidence with O VI 1032 [C – X, (1 – 1), Q(3) ] From H 2 Emission: N(H 2 ) = 1.9 x x cm -2

From H 2 Emission: N(H 2 ) = 1.9 x – 2.8 x cm -2 T(H 2 ) = 800 – 2000 K from OVI and not Ly  excitation N(H 2 )

Spitzer Prediction Data + (H 2 x 10 5 ) (  m) F Spitzer Data Consistent with all observed H 2 in the disk IR detection unlikely

Discussion N(H 2 ) / Disk Origin Required absorption column consistent with Roberge et al non-detection T(H 2 ) / Disk Origin IF T(H 2 )>2000K, Ly  -fluorescence should dominate the disk emission spectrum Stellar regions all > 2000K Photoelectric heating/grain- formation heating in the disk can produce T(H 2 )~1000K H 2 Mass – 4x10 -4 – 6x10 -6 M  Gas-to-Dust – (4x10 -2 – 5x10 -4 ) : 1 typical ISM ≈ 100:1

Discussion Comparison with  Pic (A5V): Approx coeval, ~12Myr M(  Pic) ~ 3.6 M(AU Mic) Disks have dust mass  stellar mass M D (  Pic) ~ 3.4 M D (AU Mic) Upper Limit on  Pic gas-to-dust: <3:1 Why are fluorescent H 2 lines not seen? 1) Stellar Activity - OVI line strength 2) Far-UV Continuum -  Pic extends to ≤ 1100 Å, while AU Mic has no flux in this region : contrast for weak lines

Conclusions H 2 Emission measured in the AU Mic circumstellar disk Gas is warm: T(H 2 ) = 800 – 2000 K Gas Mass: 4x10 -4 – 6x10 -6 M  Disk Gas-to-Dust Ratio: (4x10 -2 – 5x10 -4 ) : 1 IR detection will be challenging

H 2 H 2 and Dust in Circumstellar Media (  m) Pascussi 06 here Pascucci et al. 06 Thi et al. 01 (  m)