Fifth Workshop on Titan Chemistry 11-14 April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.

Slides:



Advertisements
Similar presentations
Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University.
Advertisements

Photochemistry in the Atmospheres of Hot Jupiters Yuk L. Yung 1, Mao-Chang Liang 2, Michael Line 1 and Giovanna Tinetti 3 1 Division of Geological and.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
Propane on Titan H.G. Roe 1, T. Greathouse, M. Richter, J. Lacy 1 Div. Of Geological and Planetary Sciences, CalTech Roe, H. et al. 2003, ApJ, 597, L65.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
Modeling Carbon Species in the Atmosphere of Neptune and Comparison with Spitzer Observations Xi Zhang 1, Mao-Chang Liang 2, Daniel Feldman 1, Julianne.
METO 637 Lesson 22. Jupiter Jupiter and Saturn are known as the gas planets They do not have solid surfaces, their gaseous materials get denser with.
Radiative Modeling of the Atmosphere of Neptune Y. Yung 1, X. Zhang 1, R. Shia 1, M. Liang 2, G. Orton 3, A. Mainzer 3 and M. Burgdorf 4 1 Caltech, USA.
Source of Atomic Hydrogen in the Atmosphere of HD b Mao-Chang Liang Caltech Related publications 1. Liang et al. 2003, ApJ Letters, in press 2. Liang.
Titan’s Atmospheric Chemistry Emily Schaller GE/AY 132 March 2004.
A Tale of Two Planets: Cassini UVIS He 584Å Airglow at Jupiter and Saturn Chris Parkinson, Caltech Planetary Science Seminar January 10, 2006.
SATURN’S MYSTERIOUS MOON TITAN
Detecting molecules in the atmospheres of transit Exoplanets Giovanna Tinetti University College London Mao-Chang Liang Academia Sinica, Taiwan.
The Search for Life on Titan By: Charlie Congleton
METO 637 Lesson 23. Titan A satellite of Jupiter. Titan has a bulk composition of about half water ice and half rocky material. Although similar to the.
Electrons at Saturn’s moons: selected CAPS-ELS results A.J. Coates 1,2. G.H. Jones 1,2, C.S.Arridge 1,2, A. Wellbrock 1,2, G.R. Lewis 1,2, D.T. Young 3,
New Insights into the Atmospheric Chemistry of Venus from Venus Express Yuk L. Yung Caltech GISS Seminar, Mar
Mixing State of Aerosols: Excess Atmospheric Absorption Paradox Shekhar Chandra Graduate Student, EAS Term Paper Presentation for EAS-6410.
Chemistry of Venus’ Atmosphere Vladimir A. Krasnopolsky Photochemical model for km Photochemical model for km Chemical kinetic model for.
Dr. Yuk L. Yung Professor Department of Geological and Planetary Sciences California Institute of Technology USA.
Response of Middle Atmospheric Hydroxyl Radical to the 27-day Solar Forcing King-Fai Li 1, Qiong Zhang 2, Shuhui Wang 3, Yuk L. Yung 2, and Stanley P.
Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations Christopher D. Parkinson 1, Yuk L. Yung 2,
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
Oxidants on Small Icy Bodies and Snowball Earth Yuk L. Yung (Caltech) Mao-Chang Liang (Academia Sinica)
Observations of Formaldehyde and Related Atmospheric Species Using Multi-Axis Spectroscopy Christopher P. Beekman and Dr. Heather C. Allen Department of.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
Summary  We have implemented numerically stable, continuous method of treating condensation on to grains in Titan’s atmosphere.  Our model can establish.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Seasonal Change in Titan’s Cloud Activity (A Titan Weather report) Emily Schaller (Caltech) Mike Brown (Caltech), Henry Roe (Lowell Observatory)
Moons of Saturn 14 October Iapetus Mimas.
Response of the Earth’s environment to solar radiative forcing
Density trends of negative ions at Titan A. Wellbrock 1,2,3, A. J. Coates 1,3, G. H. Jones 1,3, G. R. Lewis 1,3, C. S. Arridge 1,3, D. T. Young 4, B. A.
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
Exploring Planets and Earth Yuk Ling Yung Caltech.
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Jovian Stratospheric Circulation: Insights from Cassini Observations X. Zhang (1), R. Cosentino (2), R. Morales-Juberias (2), R. A. West (3), S. Coffing.
Fifth Workshop on Titan Chemistry – Observations, Experiments, Computations, and Modeling Poipu Koloa, Kauai, Hawaii, April 11-14, 2011 Review by Yuk Yung.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Modeling of the 11-year Solar Cycle Response in Upper Atmospheric Hydroxyl Radicals Yuk Yung ESE.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
Quarterly 1 NASA Quarterly UVIS Q (February – April 2014)
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan: FUV Limb Spectra From 2004 and EUV Laboratory Cross Sections and Observations JOSEPH AJELLO JPL MICHAEL STEVENS NRL JACQUES GUSTIN LPAP GREG.
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph Wayne Pryor Robert West Ian Stewart Don Shemansky Joseph Ajello Larry Esposito Joshua.
Journal of Astrobiology and Outreach
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
UVIS Saturn Atmosphere Occultation Prospectus
UVIS Data Analysis and Modeling: Saturn FUV images
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph
Photochemical processes on Titan
UVIS Input to Cassini Quarterly Report
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
Highlights and open questions on Titan’s atmospheric chemistry
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Jet Propulsion Lab, California Institute of Technology
Titan H2O Clouds + ISS/UVIS
Saturn temperature and H2 profiles from Solar EUV occultations
Cassini UVIS solar occultation
UVIS Saturn EUVFUV Data Analysis
Revised tholin profile for the atmosphere of Titan
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Titan T0, TA Analysis
Presentation transcript:

Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech), J. Kammer (Caltech), D. Shemansky (SET)

Outline of Today’s Talk Titan: gas phase chemistry Aerosol formation Surface chemistry Synergism with lab data

Lorenz + Mitton 02

[Moses et al., JGR, 2005]

Solar Scattering Stellar Occultation J. Ajello

Mixing Ratios of Selected Species from Occultations

UVIS spectrum Liang et al tholin CH 4 Impact: 514 km

Optical Depth Images

c Lavvas et al EUV FUV autoauto Auto-catalytic process

Hydrocarbon Abundances from TB Encounter Tholin scale heights above 540 km are larger than any other species indicating formation at high altitudes and downward diffusion.

Photochemical results Liang, Yung, Shemansky ApJ 2007 CH 4 ; hydrostatic CH 4 ; non-hydrostatic HC 3 N HCN C6N2C6N2 C6H6C6H6 C 6 N 2 ; condensation line

Gu et al. 2009

Model without Haze

C6HxC6Hx

Model with Haze

C6HxC6Hx

[Vuitton, et al., 2006]

Ion observation

Outline of Today’s Talk Titan: gas phase chemistry Aerosol formation Surface chemistry Synergism with lab data

Solar Scattering Stellar Occultation J. Ajello

Liang et al tholin CH 4 Impact: 514 km Stellar Occultation

Single Scattering Albedo (SSA): SSA = Q s /Q e Important Parameters Goody and Yung 1989

Obs: nm Refractive Index from Khare and Sagan (1984) SSA at 1875 Å

Shemansky et al. 2010

. 2 Trainer, et al 2006 Tomasko et al. 2008: ~100 km 50 nm radius 3000 monmers Comparisons

Tholin Radius at 1040 km: 16 nm Liang et al. (2007) “guessed” 12.5 nm from Stellar Occultation only Comparable to 25 nm (in radius) from Trainer et al. (2006) ; 40 nm from Bar- Nun et al. (2008) Lavvas et al. (2008) at 520 km (ISS): ~40 nm Comparison of radius of tholins

T Tomasko et al. 2008

Outline of Today’s Talk Titan: gas phase chemistry Aerosol formation Surface chemistry Synergism with lab data

What happens to the Unsaturated Hydrocarbons at the Surface? COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN’S MOON TITAN Zhou et al. 2010

Benzene (PAH) Production on Surface Cosmic-ray flux on Titan’s surface (φ CR =1e9 eV cm −2 s −1 ) Yield of benzene from solid acetylene (from lab: Y = 5.6e-3 eV −1 ) Fraction of the surface of Titan covered by organics (F o =0.2) Fraction of organics that is acetylene (F a =0.2) Time for turnover of the surface by geological processes (τ=2e6 yrs, lowest estimate ) We get: M = 1.4e19 molecules cm −2 3.4 e−17 g cm−2 s−1

Outline of Today’s Talk Titan: gas phase chemistry Aerosol formation Surface chemistry Synergism with lab data

Inverse Model Parameter Estimate Predictions Adjoint Forcing Gradients (sensitivities) Optimization Forward Model Adjoint Model Observations Improved Estimate - t0t0 tftf tftf t0t0 Forward and adjoint models <-- time evolution profiles

Lab: Adamkovics et al. (2003) Liang et al. (submitted)

Jupiter (Moses 2005)

Titan (Moses 2005)

References Yung, Y. L., M. Allen, and J. P. Pinto. (1984). "Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations." Astrophysical Journal Supplement Series 55(3): Goody, R. M., and Y.L. Yung, Atmospheric Radiation: Theoretical Basis, 1989, Oxford University Press. Yung, Y. L., and W. D. DeMore, Photochemistry of Planetary Atmospheres, 1999, Oxford University Press.

Acknowledgements We appreciate discussions with kinetics groups of Prof Kaiser and Dr Sander, Mark Allen, Bob West, and support from NASA Cassini, OPR and PATM.