AP Biology 2006-2007 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle.

Slides:



Advertisements
Similar presentations
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Advertisements

Cellular Respiration Harvesting Chemical Energy
Harvesting stored energy
Objectives Contrast the roles of glycolysis and aerobic respiration in cellular respiration. Relate aerobic respiration to the structure of a mitochondrion.
Pyruvate Oxidation. Mitochondria In eukaryotes, mitochondria produce the majority of the cell’s ATP Mitochondria: oval shaped organelles with a double.
**Glucose made as a byproduct of photosynthetic reactions Harvesting stored energy…  Energy stored in organic molecules  carbohydrates, fats, proteins.
Cellular Respiration 7.3 Aerobic Respiration.
AP Biology Cellular Respiration- Breaking the bonds of sugar to produce ATP ATP.
Glycolysis is only the start
Intro to Cellular Respiration, Glycolysis & Krebs Cycle
Cellular Respiration Chapter 8.3. Animal Plant Mitochondria.
How Cells Harvest Energy Chapter 6
AP Biology Cellular Respiration Harvesting Chemical Energy.
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate & Krebs Cycle (Ch. 10)
Energy Flow and Chemical Recycling in Ecosystems
AP Biology  convert glucose (6C) to 2 pyruvate (3C)  produces: 4 ATP & 2 NADH  consumes: 2 ATP  net: 2 ATP & 2 NADH glucose C-C-C-C-C-C P-C-C-C-C-C-C-P.
AP Biology Cellular Respiration Cellular Respiration Harvesting Chemical Energy ATP.
Cellular Respiration Harvesting Chemical Energy ATP.
Cellular Respiration. Introduction  Before food can be used to perform work, its energy must be released through the process of respiration.  Two main.
AP Biology Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle.
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
OVERVIEW 10 reactions Convert glucose (6C) to 2 pyruvate (3C) Produces: 4 ATP & 2 NADH Consumes: 2 ATP Net yield: 2 ATP & 2 NADH glucose C-C-C-C-C-C fructose-1,6bP.
Cellular Respiration Chapter 9.
AP Biology Cellular Respiration Harvesting Chemical Energy Adapted from Ms. Lisa Miller’s AP Biology Notes.
Intro to Cellular Respiration, Glycolysis & Krebs Cycle
AP Biology Chapter 9. Cellular Respiration Oxidation of Pyruvate Krebs Cycle.
Cellular Respiration AP Biology. The Equation C 6 H 12 O 6 + 6O 2  6CO 2 + 6H ATP C 6 H 12 O 6 = glucose 6O 2 = oxygen gas 6CO 2 = carbon dioxide.
KREB’S CYCLE. THE MITOCHONDRIA A mitochondrion is a specialized site of aerobic respiration. It is another example of endosymbiosis. Like chloroplasts,
AP Biology Chapter 9. Cellular Respiration Oxidation of Pyruvate Krebs Cycle.
Cellular Respiration Oxidation of Pyruvate Krebs Cycle Electron Transport Chain.
AP Biology Cellular Respiration Oxidation of Pyruvate Krebs Cycle Modified from Kim Foglia.
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Stage 1: Glycolysis
AP Biology Chapter 8. Cellular Respiration Harvesting Chemical Energy.
AP Biology Cellular Respiration Harvesting Chemical Energy.
Chapter 9.2 Cellular Respiration: Pyruvate Oxidation & Citric Acid Cycle.
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Stage 2:Oxidation of Pyruvate Stage 3: Krebs Cycle Stage 4: ETC
Cellular Respiration Oxidation of Pyruvate Krebs Cycle
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Harvesting Chemical Energy
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Stage 2:Oxidation of Pyruvate Stage 3: Krebs Cycle Stage 4: ETC
AP & Pre-AP Biology Serrano High School
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle or Citric Acid Cycle
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration.
Cellular Respiration Harvesting Chemical Energy
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
5.7 Electron Transport Chain
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Harvesting Chemical Energy
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Overview 10 reactions glucose C-C-C-C-C-C fructose-1,6bP
Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Presentation transcript:

AP Biology Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle

AP Biology pyruvate       CO 2 Glycolysis is only the start  Glycolysis  Pyruvate has more energy to yield  if O 2 is available, pyruvate enters mitochondria  enzymes of Krebs cycle complete the full oxidation of sugar to CO 2 2x2x 6C3C glucose      pyruvate 3C1C

AP Biology Cellular respiration

AP Biology intermembrane space inner membrane outer membrane matrix cristae Mitochondria — Structure  Double membrane energy harvesting organelle  smooth outer membrane  highly folded inner membrane  CALLED - Cristae- site of ETC  intermembrane space  Matrix- site of Kreb Cycle  inner fluid-filled space  DNA, ribosomes  enzymes mitochondrial DNA What cells would have a lot of mitochondria?

AP Biology Mitochondria – Function What does this tell us about the evolution of eukaryotes? Endosymbiosis! Dividing mitochondria Who else divides like that? Advantage of highly folded inner membrane? More surface area for membrane- bound enzymes Membrane-bound proteins Enzymes Oooooh! Form fits function! bacteria!

AP Biology pyruvate    acetyl CoA + CO 2 Oxidation of pyruvate- (Transition reaction) NAD 3C2C 1C [ 2x ]  Pyruvate enters mitochondrial matrix  3 step oxidation process  releases 2 CO 2 (count the carbons!)  reduces 2 NAD  2 NADH (moves e - )  produces 2 acetyl CoA  Acetyl CoA enters Krebs cycle Where does the CO 2 go? Exhale!

AP Biology Pyruvate oxidized to Acetyl CoA Yield = 2C sugar + NADH + CO 2 reduction oxidation Coenzyme A Pyruvate Acetyl CoA C-C-C C-C CO 2 NAD + 2 x [] (Acetyl CoA)

AP Biology Krebs cycle  aka Citric Acid Cycle  in mitochondrial matrix  8 step pathway  each catalyzed by specific enzyme  step-wise catabolism of 6C citrate molecule  Evolved later than glycolysis  does that make evolutionary sense?  bacteria  3.5 billion years ago (glycolysis)  free O 2  2.7 billion years ago (photosynthesis)  eukaryotes  1.5 billion years ago (aerobic respiration = organelles  mitochondria) 1937 | 1953 Hans Krebs

AP Biology The Kreb Cycle Occurs in the matrix of the mitochondria Is also called the Citric Acid Cycle

AP Biology 4C6C4C 2C6C5C4C CO 2 citrate acetyl CoA Count the carbons! 3C pyruvate x2x2 oxidation of sugars This happens twice for each glucose molecule

AP Biology 4C6C4C 2C6C5C4C CO 2 citrate acetyl CoA Count the electron carriers! 3C pyruvate reduction of electron carriers This happens twice for each glucose molecule x2x2 CO 2 NADH FADH 2 ATP

AP Biology So we fully oxidized glucose C 6 H 12 O 6  CO 2 & ended up with 4 ATP! What’s the point?

AP Biology

 Krebs cycle produces large quantities of electron carriers  NADH  FADH 2  go to Electron Transport Chain! Electron Carriers = Hydrogen Carriers What’s so important about electron carriers? H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ATP ADP + P i

AP Biology Energy accounting of Krebs cycle Net gain=2 ATP =8 NADH + 2 FADH 2 1 ADP1 ATP ATP 2x 4 NAD + 1 FAD4 NADH + 1 FADH 2 pyruvate          CO 2 3C 3x3x 1C (Substrate-level-phosphorylation)

AP Biology Value of Krebs cycle?  If the yield is only 2 ATP then how was the Krebs cycle an adaptation?  value of NADH & FADH 2  electron carriers & H carriers  to be used in the Electron Transport Chain like $$ in the bank

AP Biology hill.com/sites/ /student_vie w0/chapter25/animation__how_the_kr ebs_cycle_works__quiz_1_.html

AP Biology What’s the point? The point is to make ATP ! ATP

AP Biology H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ And how do we do that? ATP But… Have we done that yet? ADP P +  ATP synthase  set up a H + gradient  allow H + to flow through ATP synthase  powers bonding of P i to ADP ADP + P i  ATP

AP Biology NO! The final chapter to my story is next! Any Questions?