Julio Chanamé 10/March/2009 On the Full Exploitation of Discrete Velocity Data: Motivation, Method, and some Applications.

Slides:



Advertisements
Similar presentations
David Cole, University of Leicester Walter Dehnen; Mark Wilkinson – University of Leicester; Justin Read – ETH Zurich 29 June 2012.
Advertisements

General Astrophysics with TPF-C David Spergel Princeton.
To measure the brightness distribution of galaxies, we must determine the surface brightness of the resolved galaxy. Surface brightness = magnitude within.
Dwarf Galaxies in Group Environments Marla Geha Carnegie Observatories (OCIW)
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
Padova 03 3D Spectrography 3D Spectrography IV – The search for supermassive black holes.
Dec. 1-8, 2010 DARK MATTER IN GALAXIES Alessandro Romeo Onsala Space Observatory Chalmers University of Technology SE Onsala, Sweden.
Slide 1 Andromeda galaxy M31Milky Way galaxy similar to M31.
Session: MGAT9 – Self-Gravitating Systems SPHERICALLY SYMMETRIC RELATIVISTIC STELLAR CLUSTERS WITH ANISOTROPIC MOMENTUM DISTRIBUTION Marco MERAFINA Department.
Kinematics of planetary nebulae in the outskirts of galaxies, from slitless FOCAS radial velocities Roberto H. Mendez Institute for Astronomy, University.
Chania, Crete, August 2004 “The environment of galaxies” Pierre-Alain Duc Recycling in the galaxy environment F. Bournaud J. Braine U. Lisenfeld P. Amram.
Tidal Disruption of Globular Clusters in Dwarf Galaxies J. Peñarrubia Santiago 2011 in collaboration with: M.Walker; G. Gilmore & S. Koposov.
The Milky Way Galaxy part 2
Dwarf Galaxies and Their Destruction... Marla Geha Carnegie Observatories (OCIW) Collaborators: P. Guhathakurta (UCSC), R. van der Marel (STScI)
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
Internal motions in star clusters Gordon Drukier Dept. of Astronomy, Yale University Yale Astrometry Workshop — 21 July 2005 Gordon Drukier Dept. of Astronomy,
The Milky Way Galaxy 19 April 2005 AST 2010: Chapter 24.
Observational Evidence for Black Holes in Globular Clusters Karl Gebhardt (UT Austin)
M15 Remco van den Bosch Sterrewacht Leiden Tim de Zeeuw, Karl Gebhardt, Eva Noyola, Glenn van de Ven.
The Milky Way Galaxy James Binney Oxford University.
Proper-Motion Membership Determinations in Star Clusters Dana I. Dinescu (Yale U.)
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
Galaxies Chapter 16. Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes and sizes.
Black holes: do they exist?
Globular Clusters: HST Breathes New Life into Old Fossils STScI Public Lecture Series Jay Anderson August 3, 2010.
Galaxy Morphology The Tuning Fork that Blossomed into a Lemon Lance Simms MASS Talk 9/8/08.
Globular Clusters: HST Breathes New Life into Old Fossils Hubble Science Briefing Jay Anderson STScI June 3,
Susan CartwrightOur Evolving Universe1 The Milky Way n From a dark site the Milky Way can be seen as a broad band across the sky l l What is it?   telescopes.
IAS, June 2008 Caty Pilachowski. Visible in the Southern Sky Listed in Ptolemy's catalog Discovered by Edmond Halley in 1677 –non-stellar –"luminous spot.
Astrometry & the Yale/WIYN ODI Survey. Potential astrometric projects Local luminosity function (van Altena, et al.) obtain  ≤ 0.10 parallaxes to 150.
The Nature of Galaxies Chapter 17. Other Galaxies External to Milky Way –established by Edwin Hubble –used Cepheid variables to measure distance M31 (Andromeda.
Roeland van der Marel HST’s Search for Intermediate-Mass Black Holes (IMBHs) in Globular Clusters.
Massive Galaxies over Cosmic Time II Tucson, AZ Nov 1, 2006 Dynamical Models of Elliptical Galaxies in z=0.5 Clusters Measuring M/L Evolution without Fundamental.
The Sino-French IFU Workshop ---Lijing PU,SHIBI --Yunnan Observatory (Group.
Masses of Galaxy Groups Brent Tully University of Hawaii.
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
Γαλαξίες – 3 Υπερμαζικές Μαύρες Τρύπες στα κέντρα γαλαξιών 15 Ιανουαρίου 2013.
Galaxy Dynamics Lab 11. The areas of the sky covered by various surveys.
Globular Cluster and Satellite Orbits: 2008 Status Dana Casetti-Dinescu - Wesleyan and Yale.
Selection criteria: 21 < R < 24 (-14 < M R < -11) 0.45 < (B – V) < 1.1 (3 arcsec apertures) Highest priority to sources showing any sign of having profiles.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Subaru Wide-Field Survey of M87 Globular Cluster Populations N.Arimoto (NAOJ) N.Tamura, R.Sharples (Durham) M.Onodera (Tokyo, NAOJ), K.Ohta(Kyoto) J.-C.Cuillandre.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Globular Clusters. A globular cluster is an almost spherical conglomeration of 100,000 to 1,000,000 stars of different masses that have practically.
The Ultra-Faint Milky Way Satellites
Gurtina Besla Harvard CfA Collaborators: Nitya Kallivayalil
Introduction to Galaxies Robert Minchin. What is a galaxy?
1 VLT kinematics for Omega Centauri : Further support for a central BH E. Noyola et al. 2010, ApJ, 719, L Jun 30 (Thu) Sang Chul KIM ( 김상철 )
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
Galactic Structure and Near-field Cosmology via Astrometry with ODI Dana Casetti, Terry Girard, Bill van Altena - Yale Orbits of MW: satellites satellites.
Black Holes in Globular Clusters Karl Gebhardt (UT)
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Lecture 16 Measurement of masses of SMBHs: Sphere of influence of a SMBH Gas and stellar dynamics, maser disks Stellar proper motions Mass vs velocity.
Bayesian analysis of joint strong gravitational lensing and dynamic galactic mass in SLACS: evidence of line-of-sight contamination Antonio C. C. Guimarães.
The Origin and Structure of Elliptical Galaxies
© 2017 Pearson Education, Inc.
Dynamical Models for Galaxies Observed with SAURON Michele Cappellari
William E. Harris McMaster University
Learning about first galaxies using large surveys
Glenn van de Ven Institute for Advanced Study
Resolving the black hole - nuclear cluster - spheroid connection
AY202a Galaxies & Dynamics Lecture 3: Galaxy Characteristics
Observational Evidence for Black Holes in Globular Clusters
Niranjan Sambhus, Flavio De Lorenzi, Ortwin Gerhard (Basel)
Henry Ferguson STScI August 28, 2008
Galaxies With Active Nuclei
Ages, Metallicities and Abundances of Dwarf Early-Type Galaxies in the Coma Cluster by Ana Matković (STScI) Rafael Guzmán (U. of Florida) Patricia Sánchez-Blázquez (U.
Modeling the Extended Structure of Dwarf Spheroidals (Carina, Leo I)
Galaxies With Active Nuclei
Presentation transcript:

Julio Chanamé 10/March/2009 On the Full Exploitation of Discrete Velocity Data: Motivation, Method, and some Applications

Julio Chanamé 10/March/2009 A new implementation of Schwarzschild’s method Jan Kleyna Roeland van der Marel On the Full Exploitation of Discrete Velocity Data: Motivation, Method, and some Applications

Julio Chanamé 10/March/2009 A new implementation of Schwarzschild’s method dwarf elliptical galaxies in the Local Group dynamics of Galactic globular clusters Jan Kleyna Roeland van der Marel Marla Geha Raja Guhathakurta Justice Bruursema Rupali Chandar Jay Anderson Holland Ford On the Full Exploitation of Discrete Velocity Data: Motivation, Method, and some Applications

Mass distribution underlying stellar systems dark halos massive black holes structure formation Detailed dynamical studies

** Detailed ** dynamical studies Mass distribution underlying stellar systems dark halos massive black holes structure formation β = 1 – (σ θ /σ r ) 2

** Detailed ** dynamical studies Mass distribution underlying stellar systems dark halos massive black holes structure formation β = 1 – (σ θ /σ r ) 2

** Detailed ** dynamical studies Mass distribution underlying stellar systems dark halos massive black holes structure formation β = 1 – (σ θ /σ r ) 2 NGC 1407 group

Integrated light of unresolved population → long slits → integral field units “Continuous” vs Discrete Data

Integrated light of unresolved population → long slits → integral field units LOSVDs “Continuous” vs Discrete Data

ω Cen (van de Ven et al. 2006) “Continuous” vs Discrete Data

ω Cen (van de Ven et al. 2006) “Continuous” vs Discrete Data

Local Group dSph galaxies Walker et al. (2009) Geha et al. (2009)

Kinematics of Planetary Nebulae in Elliptical Galaxies Douglas et al. (2007) “Continuous” vs Discrete Data

Kinematics of Planetary Nebulae in Elliptical Galaxies Douglas et al. (2007) no dark matter?? binned data! “Continuous” vs Discrete Data

Need tools able to exploit these data appropriately globular clusters and PNe around giant E’s red giants in galaxy halos galaxy redshifts in clusters of galaxies ….. “Continuous” vs Discrete Data

more general analysis of kinematics ** full ** exploitation of available data → no assumptions about isotropy of velocity ellipsoid → as general as possible regarding geometry → no binning, higher-order moments, …..

Modeling the kinematics of stellar systems observations x,y : spatial (light) distribution v : line-of-sight velocity  : tangential velocities (GCs) xy z simplifying assumptions geometry (spherical, axisymmetric,...) shape of velocity ellipsoid simple modeling: Jeans, f(E,L ), …. z phase-space distribution function f (r,v,t) d r d v 33 f(r,v) Integrals of motion spherical system: E, L axisymmetric system: E, L, I z 3

Schwarzschild (orbit superposition) models trial gravitational potential Φ orbit library sampling (E,L z,I 3 ) integral space store orbital properties: density and kinematics as a function of (x,y) on sky

Cretton et al. (1999) Orbit Library

Rix et al. (1997) Cretton et al. (1999) Orbit Library Storing orbital properties

credits: SAURON team

Schwarzschild (orbit superposition) models trial gravitational potential Φ orbit library sampling (E,L z,I 3 ) integral space store orbital properties: density and kinematics as a function of (x,y) on sky find weighted superposition of (E,L z,I 3 ) orbits that best fits light distribution and kinematics → supermassive black holes; dark halos of galaxies; globular cluster dynamics; ….. → Rix et al. (1997) – Gebhardt et al. (2000) – Valluri et al. (2004) – van de Ven et al. (2008)…. → all set up to handle LOSVDs obtained from “continuous” datasets

3-integral Schwarzschild code for discrete datasets Tests using pseudo-data (axisymmetric) E3 galaxy varying overall rotation inclination on the sky many different input datasets Study the recovery of: distribution function mass-to-light ratio inclination Chanamé, Kleyna, & van der Marel (2008)

Recovering the input distribution function (i.e., orbital structure!!) 3-integral Schwarzschild code for discrete datasets Chanamé, Kleyna, & van der Marel (2008)

non rotating case rotating case Schwarzschild fit Input model 3-integral Schwarzschild code for discrete datasets Recovering the input distribution function (i.e., orbital structure!!) Chanamé, Kleyna, & van der Marel (2008)

proper-motions provide additional information than only-LOS velocities Recovering the input M/L 3-integral Schwarzschild code for discrete datasets Chanamé, Kleyna, & van der Marel (2008)

Recovering the input M/L 3-integral Schwarzschild code for discrete datasets Chanamé, Kleyna, & van der Marel (2008) proper-motions provide additional information than only-LOS velocities the more data points the better

Recovering the input M/L 3-integral Schwarzschild code for discrete datasets Chanamé, Kleyna, & van der Marel (2008) proper-motions provide additional information than only-LOS velocities the more data points the better

Recovering the inclination 3-integral Schwarzschild code for discrete datasets Chanamé, Kleyna, & van der Marel (2008)

ongoing applications work in progress!!

Classical E's vs dE's M32 E3 NGC 205 dwarf elliptical

M32 E3 NGC 205 dwarf elliptical Classical E's vs dE's NGC 4621 E5

M32 E3 NGC 205 dwarf elliptical Classical E's vs dE's NGC 4621 E5 Fornax dSph

NGC 147 NGC 185 NGC 205 dE's in the Local Group none around Milky Way 3 satellites of M31

Low surface brightness at large radii → integrated light measurements too hard → discrete kinematical data dE's in the Local Group ~ 10 arcmin NGC 205

dE's in the Local Group NGC 205 Geha, Guhathakurta, Rich, & Cooper (2006) Low surface brightness at large radii → integrated light measurements too hard → discrete kinematical data

dE's in the Local Group NGC 205 Geha, Guhathakurta, Rich, & Cooper (2006) Low surface brightness at large radii → integrated light measurements too hard → discrete kinematical data Projected distance ~ 8 kpc from M31 → tidal interaction: isophotal twisting, recent SF → not good for equilibrium dynamical models

~ 13' x 9' dE's in the Local Group NGC 147 de Rijcke et al. (2006) R 90% ┴ ┬ ┴ ┬ Geha et al. (in prep.)

dE's in the Local Group Jeans models Simplifying assumptions: axisymmetry, edge on 2-integral DF f(E,L z ) constant M/L

Simplifying assumptions: axisymmetry, edge on 2-integral DF f(E,L z ) constant M/L dE's in the Local Group Jeans models

3-integral Schwarzschild code for discrete datasets NGC 147 (constant M/L)

van der Marel et al. (2002)

M15 Gerssen et al. (2002) van der Marel et al. (2002)

ACS/HRC (credits: Jay Anderson, Holland Ford)

4`` x 4`` ACS/HRC (credits: Jay Anderson, Holland Ford)

0.07 mas/yr 0.3 mas/yr kpc

Search for Intermediate-Mass Black Holes with HST NGC 2808 NGC 6341 NGC 6752 NGC 362 NGC 6624 NGC 6681 NGC 7078 NGC 6266 GTO GTO HRC/HRC 2 yr baseline PI Ford GO GO GO HRC/WFPC2 GO WFC/WFC3 2.5 yr baseline PI Chandar 6 yr baseline PI Chanamé proper motions

Search for Intermediate-Mass Black Holes with HST NGC 2808 NGC 6341 NGC 6752 NGC 362 NGC 6624 NGC 6681 NGC 7078 NGC 6266 GTO GTO HRC/HRC 2 yr baseline PI Ford GO GO GO HRC/WFPC2 GO WFC/WFC3 2.5 yr baseline PI Chandar 6 yr baseline PI Chanamé proper motions discrete modeling IMBH ?? no IMBH ??

dark halos of dE’s; globular cluster dynamics (IMBHs); ….. globular clusters and PNe in giant ellipticals; ….. galaxies in galaxy clusters; ….. large kinematic surveys of the Milky Way; …. Detailed dynamical models that make the least possible number of simplifying assumptions are crucial to constrain dark halos & BHs. Available data sets need to be exploited to their full extent. dynamical modeling viewpoint: continuous data sets ≠ discrete data sets. Specialized tools are required to do this job adequately. New 3I Schwarzschild code that handles discrete data without loss of information, and works with both LOS velocities and proper motions. Tests show that it recovers the details of the DF, as well as M/L and inclination. Summary

END

E's classical E's WITH dynamical modeling (van der Marel & van Dokkum 2007; Capellari et al 2006) dE's dE's in the Local Group blue : Virgo dE’s (Geha et al. 2002) green : Local Group dE’s (de Rijcke et al. 2006) red : Jeans model for NGC 147 log σ dSph's dE’s offset from relation for classical E’s → older populations than E’s? → higher proportion of dark matter?

E's classical E's WITH dynamical modeling (van der Marel & van Dokkum 2007; Capellari et al 2006) dE's dE's in the Local Group blue : Virgo dE’s (Geha et al. 2002) green : Local Group dE’s (de Rijcke et al. 2006) red : Jeans model for NGC 147 log σ dSph's E's dE's dSph's dE’s offset from relation for classical E’s → older populations than E’s? → higher proportion of dark matter?

Classical E's vs dE's Geha, Guhathakurta, & van der Marel (2002;2003) E’s : n ~ 4 (de Vaucouleurs) dE’s: n ~ 1 – 3 I(r) = I 0 exp[(r/r 0 ) 1/n ] Sérsic profile + central nucleus (dE,N)

Classical E's vs dE's Geha, Guhathakurta, & van der Marel (2003) E's dE's dSph's GC's Different regions of Fundamental Plane UCD's → different processes of formation? → different evolutionary histories? → ….. dE’s offset from relation for classical E’s → older populations than E’s? → higher proportion of dark matter? → data at large radii to better constrain dark halos → no restrictive assumptions in modeling

Classical E's vs dE's dE host vs. nuclei E's dE's dSph's GC's NGC 205 nucleus Virgo dE nuclei

Recovering the input distribution function (i.e., orbital structure!!)

Recovering the inclination (Chanamé, van der Marel, & Kleyna, in prep.)

Verolme et al. (2002) regularization NO YES