Decimation & Interpolation (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  M=4 M M Bandwidth -  /4 Figure 12 USBLSB.

Slides:



Advertisements
Similar presentations
Digital Filter Banks The digital filter bank is set of bandpass filters with either a common input or a summed output An M-band analysis filter bank is.
Advertisements

Chapter 4 sampling of continous-time signals 4.5 changing the sampling rate using discrete-time processing 4.1 periodic sampling 4.2 discrete-time processing.
August 2004Multirate DSP (Part 2/2)1 Multirate DSP Digital Filter Banks Filter Banks and Subband Processing Applications and Advantages Perfect Reconstruction.
Digital Coding of Analog Signal Prepared By: Amit Degada Teaching Assistant Electronics Engineering Department, Sardar Vallabhbhai National Institute of.
Husheng Li, UTK-EECS, Fall  An ideal low pass filter can be used to obtain the exact original signal.
Multistage Implementation Problem: There are cases in which the filter requirements call for a digital filter of high complexity, in terms of number of.
Sampling and quantization Seminary 2. Problem 2.1 Typical errors in reconstruction: Leaking and aliasing We have a transmission system with f s =8 kHz.
OPTIMUM FILTERING.
Unit 9 IIR Filter Design 1. Introduction The ideal filter Constant gain of at least unity in the pass band Constant gain of zero in the stop band The.
CEN352, Dr. Ghulam Muhammad King Saud University
1 Audio Compression Techniques MUMT 611, January 2005 Assignment 2 Paul Kolesnik.
1 Copyright © S. K. Mitra Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals by.
1 Copyright © 2001, S. K. Mitra Polyphase Decomposition The Decomposition Consider an arbitrary sequence {x[n]} with a z-transform X(z) given by We can.
Multirate Digital Signal Processing
Name: Dr. Peter Tsang Room: G6505 Ext: 7763
Science is organized knowledge. Wisdom is organized life.
DSP-CIS Chapter-7: Introduction to Multi-rate Systems & Filter Banks
Lecture 4: Sampling [2] XILIANG LUO 2014/10. Periodic Sampling  A continuous time signal is sampled periodically to obtain a discrete- time signal as:
Relationship between Magnitude and Phase (cf. Oppenheim, 1999)
ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU Multirate Processing of Digital Signals: Fundamentals VLSI Signal Processing 台灣大學電機系 吳安宇.
Dan Ellis 1 ELEN E4810: Digital Signal Processing Topic 6: Filters - Introduction 1.Simple Filters 2.Ideal Filters 3.Linear Phase and FIR filter.
Chapter 4: Sampling of Continuous-Time Signals
… Representation of a CT Signal Using Impulse Functions
Discrete-Time and System (A Review)
H 0 (z) x(n)x(n) o(n)o(n) M G 0 (z) M + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) M G 1 (z) M v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure.
DSP-CIS Chapter-7: Filter Banks -Preliminaries
P. 1 DSP-II Digital Signal Processing II Lecture 5: Filter Banks - Preliminaries Marc Moonen Dept. E.E./ESAT, K.U.Leuven homes.esat.kuleuven.be/~moonen/
The Wavelet Tutorial: Part3 The Discrete Wavelet Transform
Tamal Bose, Digital Signal and Image Processing © 2004 by John Wiley & Sons, Inc. All rights reserved. Figure 5-1 (p. 321) Decimation by a factor of M.
111 Lecture 2 Signals and Systems (II) Principles of Communications Fall 2008 NCTU EE Tzu-Hsien Sang.
DSP-CIS Chapter-8: Maximally Decimated PR-FBs Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven
System Function of discrete-time systems
Notice  HW problems for Z-transform at available on the course website  due this Friday (9/26/2014) 
Professor A G Constantinides 1 Interpolation & Decimation Sampling period T, at the output Interpolation by m: Let the OUTPUT be [i.e. Samples exist at.
P. 1 DSP-II Digital Signal Processing II Lecture 7: Modulated Filter Banks Marc Moonen Dept. E.E./ESAT, K.U.Leuven homes.esat.kuleuven.be/~moonen/
DSP-CIS Chapter-7: Filter Banks -Preliminaries Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven
Digital Signal Processing Chapter 3 Discrete transforms.
Ch.10 Design of Digital Filters and Controllers Discretization The sampled signal x s (t) = x(t) p(t) where p(t) is the sampling pulse signal, with.
Original signal Median of seven Moving average Non-Linear Filter Median of five or seven.
Channel Spectral Characteristics Some Polyphase Filter Options.
EE445S Real-Time Digital Signal Processing Lab Spring 2014 Lecture 16 Quadrature Amplitude Modulation (QAM) Receiver Prof. Brian L. Evans Dept. of Electrical.
revision Transfer function. Frequency Response
1 Lecture 4: March 13, 2007 Topic: 1. Uniform Frequency-Sampling Methods (cont.)
Subband Coding Jennie Abraham 07/23/2009. Overview Previously, different compression schemes were looked into – (i)Vector Quantization Scheme (ii)Differential.
More On Linear Predictive Analysis
. Fix-rate Signal Processing Fix rate filters - same number of input and output samples Filter x(n) 8 samples y(n) 8 samples y(n) = h(n) * x(n) Figure.
DSP-CIS Part-IV : Filter Banks & Subband Systems Chapter-10 : Filter Bank Preliminaries Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven
Frequency Domain Coding of Speech 主講人:虞台文. Content Introduction The Short-Time Fourier Transform The Short-Time Discrete Fourier Transform Wide-Band Analysis/Synthesis.
P. 1 DSP-II Digital Signal Processing II Lecture 6: Maximally Decimated Filter Banks Marc Moonen Dept. E.E./ESAT, K.U.Leuven
Digital Signal Processing II Lecture 7: Maximally Decimated Filter Banks Marc Moonen Dept. E.E./ESAT, K.U.Leuven
Lecture 3: The Sampling Process and Aliasing 1. Introduction A digital or sampled-data control system operates on discrete- time rather than continuous-time.
Sub-Band Coding Multimedia Systems and Standards S2 IF Telkom University.
Chapter 5. Transform Analysis of LTI Systems Section
Sampling Rate Conversion by a Rational Factor, I/D
DSP-CIS Chapter 6: Filter Banks - Preliminaries Marc Moonen Dept. E.E./ESAT, K.U.Leuven
VLSI SP Course 2001 台大電機吳安宇 Multirate Processing of Digital Signals: Fundamentals For NTUEE VLSI Signal Processing Course Instructor: 吳安宇教授.
Relationship between Magnitude and Phase Quote of the Day Experience is the name everyone gives to their mistakes. Oscar Wilde Content and Figures are.
Multiresolution Analysis (Section 7.1) CS474/674 – Prof. Bebis.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Spring.
EEE4176 Applications of Digital Signal Processing
Multirate Signal Processing* Tutorial using MATLAB**
Software Defined Radio PhD Program on Electrical Engineering
Applications of Multirate Signal Processing
Sampling rate conversion by a rational factor
Multi-Resolution Analysis
لجنة الهندسة الكهربائية
Quadrature-Mirror Filter Bank
DSP-CIS Chapter 8: Modulated Filter Banks
Govt. Polytechnic Dhangar(Fatehabad)
ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals
Presentation transcript:

Decimation & Interpolation (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  M=4 M M Bandwidth -  /4 Figure 12 USBLSB

Decimation & Interpolation Still OK. Lets Try a sequence with wider Bandwidth

Decimation & Interpolation (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  M M Bandwidth >  /4 Figure 13 USBLSB

Decimation & Interpolation Distortion (commonly known as “aliasing error”) is present if the bandwidth of the input sequence exceeds +  /M When aliasing error is present, the signal cannot be recovered with interpolation Even if aliasing error is absent, there are multiple images in the interpolated spectrum

Decimation Filter To avoid aliasing error, a low pass filter is used to restricted the signal bandwidth to within +  /M h(n)h(n) x(n)x(n) M y(n)y(n) v(n)v(n) (14a) (14b)

0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  M Low Pass anti-aliasing Filter Figure 14 Action of Anti-aliasing Filter (M=4)

Interpolation Filter (M=4) M g(n)g(n) x(n)x(n) y(n)y(n) v(n)v(n) M Figure 15a

Interpolation Filter (M=4) M g(n)g(n) x(n)x(n) y(n)y(n) v(n)v(n) M The I-filter fills the missing gaps in the output sequence Figure 15b

Interpolation Band Pass Filter (M=4) M Interpolation Filter G(z) Figure 16 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  /2

Action of Bandpass Filter (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  Figure 17 Band Pass Filter  /2

Action of Bandpass Filter (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  Figure 18 Band Pass Filter  /2

Action of Bandpass Filter (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  Figure 19 Band Pass Filter M  /2

Interpolation Band Pass Filter (M=4) M 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  /2 Figure 20

What’s the use of learning all this?

The power of Multi-rate Signal Processing Decimation, interpolation and filtering forms the backbone for efficient extraction of useful signal spectrum Real world signal usually only occupies part of the frequency spectrum Sometimes only certain part(s) of the spectrum is/are useful

The power of Multi-rate Signal Processing Decimation, interpolation and filtering forms the backbone for efficient extraction of useful signal spectrum Real world signal usually only occupies part of the frequency spectrum Sometimes only certain part(s) of the spectrum is/are useful

The power of Multi-rate Signal Processing Decimation, interpolation and filtering forms the backbone for efficient extraction of useful signal spectrum Real world signal usually only occupies part of the frequency spectrum Sometimes only certain part(s) of the spectrum is/are useful

Information extraction with Milti-band filtering Band 0 x(n)x(n) yo(n)yo(n) Band 1 y1(n)y1(n) Band 2 y2(n)y2(n) Band M-1 y M-1 (n) Figure 21

Applications of Bandpass filtering Subband Coding - Audio and Image data usually concentrates in narrow bands in the spectrum Decompose x(n) into M bands Select only the essential bands where information is concentrated (e.g. select K bands where K<M) x(n)= [x(0),x(1),....., x(N-1)] N Number of data samples MN Downsample each band by M M(N/M) = N K(N/M) < N

Applications of Bandpass filtering Subband Coding - A more practical scheme Decompose x(n) into M bands A coder to allocate more bits for (finer quantization) for more important bands and vice versa x(n)= [x(0),x(1),....., x(N-1)] N Number of data samples MN Downsample each band by M M(N/M) = N

Applications of Bandpass filtering Speech Recognition with Multi-band filtering Band 0 x(n)x(n) Figure 22 Band 1 Band 2 Band M-1 zero crossing detector Z0Z0 Z1Z1 Z2Z2 Z M-1

Applications of Bandpass filtering Speech Recognition with Multi-band filtering Decompose x(n) into M bands M<<N Each word is represented by the sequence of zero crossing Z = [z 1, z 2,..., z M ] Compute the number of zero- crossings in each band

Applications of Bandpass filtering Speech Recognition with Multi-band filtering Unknown Word x U (n) Z U =[z 1,...., z M ] Word 1 - Z 1 Word 2 - Z 2 Word 3 - Z 3 Word K - Z K MATCH BEST MATCH Word P Figure 23

Subband Coding H 0 (z) x(n)x(n) o(n)o(n) M CoderG 0 (z) M + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) M CoderG 1 (z) M v1(n)v1(n) y1(n)y1(n) H P (z) M CoderG P (z) M P(n)P(n) vP(n)vP(n) yP(n)yP(n) H M-1 (z) M CoderG M-1 (z) M  M-1 (n) v M-1 (n)y M-1 (n) fo(n)fo(n) f1(n)f1(n) fP(n)fP(n) f M-1 (n) y(n)y(n) Figure 24 Analysis filterSynthesis filter

Subband Coding Forget the coder for the time being Can the input signal x(n) be fully recovered at the output?

Suband Decomposition and Reconstruction H 0 (z) x(n)x(n) o(n)o(n) M G 0 (z) M + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) M G 1 (z) M v1(n)v1(n) y1(n)y1(n) H P (z) M G P (z) M P(n)P(n) vP(n)vP(n) yP(n)yP(n) H M-1 (z) M G M-1 (z) M  M-1 (n) v M-1 (n)y M-1 (n) fo(n)fo(n) f1(n)f1(n) fP(n)fP(n) f M-1 (n) y(n)y(n) Figure 25 Analysis filterSynthesis filter

Subband Coding Forget the coder for the time being Can the input signal x(n) be fully recovered at the output? Answer: No WHY?

Non-perfect Reconstruction in Subband Coding Filters are never perfect, causing aliasing error 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  Ideal Low Pass anti-aliasing Filter Figure 26 Non-ideal response M

Perfect Reconstruction (PR) in Subband Coding M = 2 H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure 27

Perfect Reconstruction (PR) in Subband Coding M = 2 H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure 27

Perfect Reconstruction (PR) in Subband Coding M = 2 H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure 27

Perfect Reconstruction (PR) in Subband Coding M = 2 H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure 27

Perfect Reconstruction (PR) in Subband Coding M = 2 H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure 27

H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Figure 27 Y(z) will not be equal to X(z) unless 1. T(z) = cz -K (c and K are constant, and 2. S(z) = 0 for all z (15)

(16) Eqn. (16) can be satisfied simply by selecting G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) (17)

(15) G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) (17) Eqn. (15) and (17) gives (18)

(15) G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) (17) Eqn. (15) and (17) gives (18) Let H 1 (z) = z -(N-1) H 0 (-z -1 )and N is even, (19)

For perfect reconstruction, Q(z) = constant The term H 0 (z)H 0 (z -1 ) is the autocorrelation function, i.e., (20) It can be easily proved that (21) * Prove (20) and (21) as an exercise

For Perfect Reconstruction, R(z)+R(-z) = constant if R(z)+R(-z) = 1 the PR filter is known as a ‘paraunitary’ solution, i.e. (22) (23)

Paraunitary Perfect Reconstruction Filter for M = 2 H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) 1. G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) 2. H 1 (z) = z -(N-1) H 0 (-z -1 ) 3. R(z) = H 0 (z) H 0 (z -1 ) 4. R(z) + R(-z) = 1 (24)

Multiband Paraunitary Perfect Reconstruction Filter The 2 band PR structure can be extended to multiband H0(z)H0(z) H1(z)H1(z) H0(z)H0(z) H1(z)H1(z) H0(z)H0(z) H1(z)H1(z) G0(z)G0(z) G1(z)G1(z) G0(z)G0(z) G1(z)G1(z) G0(z)G0(z) G1(z)G1(z) x[n]x[n] y[n]y[n]

Paraunitary PR Filter - a physical view 1. G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) 2. H 1 (z) = z -(N-1) H 0 (-z -1 ) 3. R(z) = H 0 (z) H 0 (z -1 ) 4. R(z) + R(-z) = 1 Let H(z) = H o (z)

Paraunitary PR Filter - a physical view Note: all odd terms are zero except for n=0, hence By definition,

Paraunitary PR Filter - a physical view 1. G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) 2. H 1 (z) = z -(N-1) H 0 (-z -1 ) 3. R(z) = H 0 (z) H 0 (z -1 ) 4. R(z) + R(-z) = 1 Let H(z) = H o (z) (25) Filters satisfying these requirement: Power Complementary filters

Simple Power Complementary Filter 1. G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) 2. H 1 (z) = z -(N-1) H 0 (-z -1 ) 3. R(z) = H 0 (z) H 0 (z -1 ) 4. R(z) + R(-z) = 1 (27) Let H(z) = H o (z)

Simple Power Complementary Filter However, H(z) = H o (z) and H 1 (z) = z -(N-1) H o (-z -1 ) (28) (29)

A physical interpretation 1. G 0 (z) = -H 1 (-z) and G 1 (z) = H 0 (-z) 2. H 1 (z) = z -(N-1) H 0 (-z -1 ) 3. R(z) = H 0 (z) H 0 (z -1 ) 4. R(z) + R(-z) = 1  /2  Ho(ej)Ho(ej)H1(ej)H1(ej)  H o (e j  ) - Low pass filter H 1 (e j  ) - High pass filter G o (e j  ) - LPF which passes H o (e j  ) and reject H 1 (e j  ) G 1 (e j  ) - Opposite of G 0 (e j  )

H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Equivalent Structure 2 channel PR-QMF subband filter H (z) b(n)b(n) M a(n)a(n) c(n)c(n) H (z M ) d(n)d(n) M a(n)a(n) c(n)c(n)

Equivalent Structure H (z) b(n)b(n) M a(n)a(n) c(n)c(n) H (z M ) d(n)d(n) M a(n)a(n) c(n)c(n) and (30a)

Equivalent Structure H (z) b(n)b(n) M a(n)a(n) c(n)c(n) H (z M ) d(n)d(n) M a(n)a(n) c(n)c(n) ? Decimation discards samples from a(n) b(n) different from a(n) and d(n) All pass filter If b(n) different from d(n), how can they give the same result c(n)? Answer: a matter of perspective Lets study from the other point of view

Equivalent Structure H (z M ) d(n)d(n) M a(n)a(n) c(n)c(n) d(n) = a(n) c(n) is the decimation of a(n) and d(n) H (z) b(n)b(n) M a(n)a(n) c(n)c(n) All pass filter We look at the alternative representation c(n) = b(n) Hence c(n) is the decimation of a(n) Same

Equivalent Structure H (z) b(n)b(n) M a(n)a(n) c(n)c(n) H (z M ) d(n)d(n) M a(n)a(n) c(n)c(n) (30b)

Polyphase Decomposition (30c)

Polyphase Decomposition (30c) Decimating H(z) by M times, associated with different delay terms.

Polyphase Decomposition H (z)H (z) b(n)b(n) M a(n)a(n) c(n)c(n) H0 (zM)H0 (zM) b(n)b(n) M a(n)a(n) c(n)c(n) H1 (zM)H1 (zM) H2 (zM)H2 (zM) H M-1 (z M ) z -1 Decimator

Polyphase Decomposition H0 (zM)H0 (zM) b(n)b(n) M a(n)a(n) c(n)c(n) H1 (zM)H1 (zM) H2 (zM)H2 (zM) H M-1 (z M ) z -1 H0 (z)H0 (z) M a(n)a(n) c(n)c(n) H1 (z)H1 (z) H2 (z)H2 (z) H M-1 (z) z -1 M M M According to equation (30a) Decimator

Polyphase Decomposition - a simplification in filter design /M/M  /M 0 H(ej)H(ej) ,where

Polyphase Decomposition - a simplification in filter design /M/M  /M 0 H(ej)H(ej) 

Polyphase Decomposition /M/M  /M 0 H(ej)H(ej)  which is just a series of all-pass linear phase filter

All Pass Filter An approximation of linear phase APF

Uniform Bank Filter Applying Polyphase Decomposition

Uniform Bank Filter

Polyphase decomposition of H 0 (z) DFT Matrix

G(z)G(z) b(n)b(n) M a(n)a(n) c(n)c(n) G0 (zM)G0 (zM) c(n)c(n) M G1 (zM)G1 (zM) G2 (zM)G2 (zM) G M-1 (z M ) z -1 Polyphase Decomposition a(n)a(n) b(n)b(n) Interpolator

G(z)G(z) b(n)b(n) M a(n)a(n) c(n)c(n) G0 (zM)G0 (zM) c(n)c(n) M G1 (zM)G1 (zM) G2 (zM)G2 (zM) G M-1 (z M ) Polyphase Decomposition a(n)a(n) b(n)b(n) z -1 Interpolator

Polyphase Decomposition According to equation (30b) G0 (zM)G0 (zM) c(n)c(n) M G1 (zM)G1 (zM) G2 (zM)G2 (zM) G M-1 (z M ) a(n)a(n) b(n)b(n) z -1 G0 (z)G0 (z) c(n)c(n) M G1 (z)G1 (z) G2 (z)G2 (z) G M-1 (z) a(n)a(n) z -1 MMM Interpolator

Polyphase Decomposition of 2 channels QMF banks H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n)

Polyphase Decomposition of 2 channels QMF banks For PR condition, This can be,satisfied by choosing so that

Polyphase Decomposition of 2 channels QMF banks

H0(z)H0(z) o(n)o(n) 2 H0(z)H0(z) 2 + vo(n)vo(n) yo(n)yo(n) H 0 (-z) 1(n)1(n) 2 -H 0 (-z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) x(n)x(n)

Polyphase Decomposition of 2 channels QMF banks Polyphase decomposition: H0(z)H0(z) o(n)o(n) 2 H0(z)H0(z) 2 + vo(n)vo(n) yo(n)yo(n) H 0 (-z) 1(n)1(n) 2 -H 0 (-z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) x(n)x(n)

Polyphase Decomposition of 2 channels QMF banks H 0 (z) x(n)x(n) o(n)o(n) 2 G 0 (z) 2 + vo(n)vo(n) yo(n)yo(n) H 1 (z) 1(n)1(n) 2 G 1 (z) 2 v1(n)v1(n) y1(n)y1(n) fo(n)fo(n) f1(n)f1(n) y(n)y(n) Consider H 0 (z)

Polyphase Decomposition of 2 channels QMF banks H0(z)H0(z) x(n)x(n) 2 E0(z2)E0(z2) E1(z2)E1(z2) 2 z -1 x(n)x(n) Equivalent to E0(z)E0(z) E1(z)E1(z) 2 z -1 x(n)x(n) Equivalent to 2 vo(n)vo(n) vo(n)vo(n) vo(n)vo(n)

Polyphase Decomposition of 2 channels QMF banks H1(z)H1(z) x(n)x(n) 2 E0(z2)E0(z2) E1(z2)E1(z2) 2 z -1 x(n)x(n) Equivalent to E0(z)E0(z) E1(z)E1(z) 2 z -1 x(n)x(n) Equivalent to 2 v1(n)v1(n) v1(n)v1(n) v1(n)v1(n)

Polyphase Decomposition of 2 channels QMF banks E0(z)E0(z) E1(z)E1(z) 2 z -1 x(n)x(n) 2 vo(n)vo(n) v1(n)v1(n) E1(z)E1(z) E0(z)E0(z) 2 y(n)y(n) 2 z -1

Polyphase Decomposition of 2 channels QMF banks For PR, T(z) is a delay term, i.e., and