AP Biology 2006-2007 Nucleic Acids Information storage.

Slides:



Advertisements
Similar presentations
AP Biology DNA Replication AP Biology Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated.
Advertisements

Nucleic acids Nucleic Acids Information storage.
AP Biology Nucleic acids AP Biology Nucleic Acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology DNA Replication AP Biology Watson and Crick 1953 article in Nature.
DNA Replication
DNA Replication.
AP Biology DNA Replication Ch.12.2 AP Biology DNA Replication  Purpose: cells need to make a copy of DNA before dividing so each daughter.
DNA Replication Ch. 16 Watson and Crick 1953 article in Nature.
Genetics DNA Replication Genetics Why do cells divide…  for reproduction  One celled organisms (clones)  for growth & development  From.
AP Biology Synthesis of DNA June
Chapter 16 DNA Replication
AP Biology DNA Replication STRUCTURE OF NUCLEIC ACIDS Sugar can be DEOXYRIBOSE (DNA) RIBOSE (RNA) Built from NUCLEOTIDE SUBUNITS NITROGEN BASES.
DNA. Nucleic Acids Informational polymers Made of C,H,O,N and P No general formula Examples: DNA and RNA.
AP Biology DNA Replication AP Biology Watson and Crick 1953 article in Nature.
AP Biology DNA Replication AP Biology Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated.
DNA Replication Copying DNA Replication of DNA – base pairing – new strand is 1/2 parent template & 1/2 new DNA semi-conservative copy process.
AP Biology Chapter 16 DNA Replication Slides with blue borders come from a slide show by Kim Foglia (
DNA Replication
AP Biology Nucleic Acids Information storage Energy Transfer.
AP Biology DNA Replication AP Biology Watson and Crick 1953 article in Nature.
Warm-up: Identify the components of the following parts of DNA :
AP Biology A A A A T C G C G T G C T Macromolecules: Nucleic Acids  Examples:  RNA (ribonucleic acid)  single helix  DNA (deoxyribonucleic acid)
DNA Replication Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated immediately suggests.
AP Biology DNA Replication AP Biology proteinRNA The “Central Dogma” DNA transcriptiontranslation replication  Flow of genetic information.
AP Biology A A A A T C G C G T G C T Macromolecules: Nucleic Acids  Examples:  RNA (ribonucleic acid)  single helix  DNA (deoxyribonucleic acid)
AP Biology A A A A T C G C G T G C T Macromolecules: Nucleic Acids  Examples:  RNA (ribonucleic acid)  single helix  DNA (deoxyribonucleic acid)
AP Biology Nucleic Acids Information storage proteins DNA Nucleic Acids  Function:  genetic material  stores information  genes  blueprint for building.
Unit 2: Molecular Genetics Bi 1d: Central Dogma Bi 5a: DNA, RNA, protein structure and function Bi 5b: Base pairing rules.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
AP Biology Nucleic Acids AP Biology Nucleic acids.
AP Biology Nucleic acids AP Biology Nucleic Acids Information storage.
DNA Replication Functions of DNA 1. Replication – Occurs before Mitosis and meiosis only Produces an exact copy of DNA 2. Transcription – DNA makes mRNA.
DNA Replication.
DNA Replication Watson and Crick 1953 article in Nature.
Nucleic Acids Information storage
DNA Replication Ch. 16.
Monday, 1/6/14 Collect HW: Chp Guided Reading & Bozeman Video Guide
DNA Replication
DNA Replication
Nucleic Acids Information storage
The structure of Nucleic Acids
Win at Shmoop! Discuss at least 5 differences between DNA and RNA
DNA Replication
I create a video presenting the steps of DNA replication (S phase)
DNA Replication
Chapter 16 DNA Replication
DNA Replication.
DNA Structure and Replication
DNA Replication
DNA Replication
DNA Replication
DNA Replication
DNA Replication
Tuesday, 1/8/13 Complete Chp.16 Notes
DNA Replication
DNA Replication
DNA Replication
DNA Replication
DNA Replication
Nucleic Acids Information storage
DNA Replication
DNA Replication
DNA Replication
DNA Replication
DNA Replication
DNA Replication
Nucleic Acids Information storage
DNA Replication
A T C G Isn’t this a great illustration!?.
Presentation transcript:

AP Biology Nucleic Acids Information storage

AP Biology proteins DNA Nucleic Acids  Function:  genetic material  stores information  genes  blueprint for building proteins DNA  RNA  proteins  transfers information  blueprint for new cells  blueprint for next generation

AP Biology Nucleic Acids  Examples:  RNA (ribonucleic acid)  single helix  DNA (deoxyribonucleic acid)  double helix  Structure:  monomers = nucleotides RNADNA

AP Biology Nucleotides  3 parts  nitrogen base (C-N ring)  pentose sugar (5C)  ribose in RNA  deoxyribose in DNA  phosphate (PO 4 ) group Are nucleic acids charged molecules? Nitrogen base I’m the A,T,C,G or U part!

AP Biology Types of nucleotides  2 types of nucleotides  different nitrogen bases  purines  double ring N base  adenine (A)  guanine (G)  pyrimidines  single ring N base  cytosine (C)  thymine (T)  uracil (U) Purine = AG Pure silver!

AP Biology Nucleic polymer  Backbone  sugar to PO 4 bond  phosphodiester bond  new base added to sugar of previous base  polymer grows in one direction  N bases hang off the sugar-phosphate backbone Dangling bases? Why is this important?

AP Biology Pairing of nucleotides  Nucleotides bond between DNA strands  H bonds  purine :: pyrimidine  A :: T  2 H bonds  G :: C  3 H bonds Matching bases? Why is this important?

AP Biology DNA molecule  Double helix  H bonds between bases join the 2 strands  A :: T  C :: G H bonds? Why is this important?

AP Biology Copying DNA  Replication  2 strands of DNA helix are complementary  have one, can build other  have one, can rebuild the whole Matching halves? Why is this a good system?

AP Biology When does a cell copy DNA?  When in the life of a cell does DNA have to be copied?  cell reproduction  mitosis  gamete production  meiosis

AP Biology DNA Replication

AP Biology Directionality of DNA  You need to number the carbons!  it matters! OH CH 2 O PO 4 N base ribose nucleotide This will be IMPORTANT!!

AP Biology The DNA backbone  Putting the DNA backbone together  refer to the 3 and 5 ends of the DNA  the last trailing carbon OH O 3 PO 4 base CH 2 O base O P O C O –O–O CH Sounds trivial, but… this will be IMPORTANT!!

AP Biology Anti-parallel strands  Nucleotides in DNA backbone are bonded from phosphate to sugar between 3 & 5 carbons  DNA molecule has “direction”  complementary strand runs in opposite direction

AP Biology Bonding in DNA ….strong or weak bonds? How do the bonds fit the mechanism for copying DNA? covalent phosphodiester bonds hydrogen bonds

AP Biology Base pairing in DNA  Purines  adenine (A)  guanine (G)  Pyrimidines  thymine (T)  cytosine (C)  Pairing  A : T  2 bonds  C : G  3 bonds

AP Biology Copying DNA  Replication of DNA  base pairing allows each strand to serve as a template for a new strand  new strand is 1/2 parent template & 1/2 new DNA  semi-conservative copy process

AP Biology DNA Replication  Large team of enzymes coordinates replication Let’s meet the team…

AP Biology Replication: 1st step  Unwind DNA  helicase enzyme  unwinds part of DNA helix  stabilized by single-stranded binding proteins single-stranded binding proteins replication fork helicase I’d love to be helicase & unzip your genes…

AP Biology DNA Polymerase III Replication: 2nd step But… We’re missing something! What? Where’s the ENERGY for the bonding!  Build daughter DNA strand  add new complementary bases  DNA polymerase III

AP Biology Limits of DNA polymerase III  can only build onto 3 end of an existing DNA strand Leading & Lagging strands Leading strand Lagging strand Okazaki fragments ligase Okazaki Leading strand  continuous synthesis Lagging strand  Okazaki fragments  joined by ligase  “spot welder” enzyme DNA polymerase III  3 5 growing replication fork

AP Biology Replication fork 3’ 5’ 3’ 5’ 3’ 5’ helicase direction of replication SSB = single-stranded binding proteins primase DNA polymerase III DNA polymerase I ligase Okazaki fragments leading strand lagging strand SSB

AP Biology DNA polymerases  DNA polymerase III  1000 bases/second!  main DNA builder  DNA polymerase I  20 bases/second  editing, repair & primer removal DNA polymerase III enzyme Arthur Kornberg 1959 Thomas Kornberg ??

AP Biology Editing & proofreading DNA  1000 bases/second = lots of typos!  DNA polymerase I  proofreads & corrects typos  repairs mismatched bases  removes abnormal bases  repairs damage throughout life  reduces error rate from 1 in 10,000 to 1 in 100 million bases