Quick Review of Remote Sensing Basic Theory Paolo Antonelli SSEC University of Wisconsin-Madison Monteponi, September 2008.

Slides:



Advertisements
Similar presentations
Electro-magnetic radiation
Advertisements

Electromagnetic Radiation
The Atmospheric Greenhouse Effect Please read Chapter 3 in Archer Textbook.
MODIS/AIRS Workshop MODIS Level 2 Cloud Product 6 April 2006 Kathleen Strabala Cooperative Institute for Meteorological Satellite Studies University of.
MET 112 Global Climate Change
Radiation Heat Transfer
Radiometric Corrections
The Greenhouse Effect and Earth-Atmosphere Energy Balance
METO621 Lesson 18. Thermal Emission in the Atmosphere – Treatment of clouds Scattering by cloud particles is usually ignored in the longwave spectrum.
Electromagnetic Radiation Electromagnetic Spectrum Radiation Laws Atmospheric Absorption Radiation Terminology.
1. 2 Definition 1 – Remote sensing is the acquiring of information about an object or scene without touching it through using electromagnetic energy a.
Cooperative Institute for Research in the Atmosphere Introduction to Remote Sensing Stan Kidder COMET Faculty Course Boulder, CO August 9, 2011
ABSORPTION Beer’s Law Optical thickness Examples BEER’S LAW Note: Beer’s law is also attributed to Lambert and Bouguer, although, unlike Beer, they did.
MET 60: Chapter: 4 (W&H) and 2 (Stull) Radiative Transfer Dr. Craig Clements San José State University.
Satellites Observations Temperature and albedo. What we need to do How do we get values of temperature and albedo (reflectance) using the instruments.
Atmospheric Emission.
Weighting Functions for Microwave and Infra-Red Satellite Nadir Sounding Remote Sensing I Lecture 7 Summer 2006.
Energy interactions in the atmosphere
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 2 The Earth’s Energy Balance Dr. Craig Clements San José State University Outline.
METR180: Remote Sensing Lecture 14 – On Water Vapor.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 8 “Radiative Transfer” Dr. Eugene Cordero San Jose State University.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison South Africa, April 2006.
Lecture 1: Introduction to the planetary energy balance Keith P Shine, Dept of Meteorology,The University of Reading
Reminder of radiance quantities I λ RadianceW m -2 μm -1 sr -1 Intensity (Monochromatic) F λ Spectral IrradianceW m -2 μm -1 Monochromatic Flux F(Broadband)
Pat Arnott, ATMS 749 Atmospheric Radiation Transfer Chapter 6: Blackbody Radiation: Thermal Emission "Blackbody radiation" or "cavity radiation" refers.
1 Remote Sensing Fundamentals Part II: Radiation and Weighting Functions Tim Schmit, NOAA/NESDIS ASPB Material from: Paul Menzel UW/CIMSS/AOS and Paolo.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison Benevento, June 2007.
Laws of Radiation Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Macro Description of highly complex Wave.
Radiation: Processes and Properties -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3.
Radiation: WHY CARE ??? the ultimate energy source, driver for the general circulation usefully applied in remote sensing (more and more)
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 2 The Earth’s Energy Balance Dr. Eugene Cordero San Jose State University Outline.
Predicting Engine Exhaust Plume Spectral Radiance & Transmittance
1 Met 10 Weather Processes Jeff Gawrych Temperature, Heat Transfer and Earth’s Energy Balance.
Remote Sensing Energy Interactions with Earth Systems.
Summary of Radiation and the Radiative Transfer Equation Lectures for the Regional Training Course in Costa Rica 15 March 2005 Paul Menzel NOAA/NESDIS/ORA.
Radiative Transfer in the Atmosphere Lectures in Benevento June 2007 Paul Menzel UW/CIMSS/AOS.
Physics of the Atmosphere II
Radiation and the Radiative Transfer Equation Lectures in Ostuni June 2006 Paul Menzel NOAA/NESDIS/ORA.
Radiation Heat Transfer EGR 4345 Heat Transfer. Blackbody Radiation Blackbody – a perfect emitter & absorber of radiation Emits radiation uniformly in.
Remote Sensing Seminar Lectures in Maratea 22 – 31 May 2003 Hank Revercomb Paolo Antonelli UW/CIMSS Vincenzo Cuomo Carmine Serio Filomena Romana IMAA/Italy.
Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal nomenclature.
Radiation and the Radiative Transfer Equation Lectures in Maratea 22 – 31 May 2003 Paul Menzel NOAA/NESDIS/ORA.
Pat Arnott, ATMS 749, UNR, 2008 CH 8: ATMOSPHERIC EMISSION: PRACTICAL CONSEQUENCES OF THE SCHWARZSCHILD EQUATION FOR RADIATION TRANSFER WHEN SCATTERING.
Predicting Engine Exhaust Plume Spectral Radiance & Transmittance Engineering Project MANE 6980 – Spring 2010 Wilson Braz.
Please read Chapter 4 in Archer Textbook
Radiation and the Radiative Transfer Equation Lectures in Bertinoro 23 Aug – 2 Sep 2004 Paul Menzel NOAA/NESDIS/ORA.
Lectures in Monteponi 21 – 27 September 2008 Paul Menzel Paolo Antonelli UW/CIMSS Jochem Kerkmann Hans Peter Roesli EUMETSAT Alberto Marini University.
Electromagnetic Radiation: Interactions in the Atmosphere.
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 3 The Earth’s Energy Balance Dr. Eugene Cordero San Jose State University Outline.
Blackbody Radiation/ Planetary Energy Balance
Within dr, L changes (dL) from… sources due to scattering & emission losses due to scattering & absorption Spectral Radiance, L(, ,  ) - W m -2 sr -1.
Reminder of radiance quantities I λ RadianceW m -2 μm -1 sr -1 Intensity (Monochromatic) F λ Spectral IrradianceW m -2 μm -1 Monochromatic Flux F(Broadband)
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison South Africa, April 2006.
Summary Remote Sensing Seminar Summary Remote Sensing Seminar Lectures in Maratea Paul Menzel NOAA/NESDIS/ORA May 2003.
Energy, heat, and absorption Scripps Classroom Connection
Planck’s law  Very early in the twentieth century, Max Karl Ernest Ludwig Planck put forth the idea of the quantum theory of radiation.  It basically.
Introduction to Radiative Transfer The Bologna Lectures Paul Menzel NOAA/NESDIS/ORA.
Physical Principles of Remote Sensing: Electromagnetic Radiation
Radiative Transfer in the Atmosphere
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
ELECTROMAGNETIC RADIATION
Remote Sensing Seminar
Remote Sensing Seminar
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
By Narayan Adhikari Charles Woodman
CH 8: ATMOSPHERIC EMISSION: PRACTICAL CONSEQUENCES OF THE SCHWARZSCHILD EQUATION FOR RADIATION TRANSFER WHEN SCATTERING IS NEGLIGIBLE Key Concepts: Infrared.
Introduction and Basic Concepts
ELECTROMAGNETIC RADIATION
Presentation transcript:

Quick Review of Remote Sensing Basic Theory Paolo Antonelli SSEC University of Wisconsin-Madison Monteponi, September 2008

2 Visible (Reflective Bands) Infrared (Emissive Bands) Radiative Transfer Equation in the IR

3 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation Basic Units Definitions of Radiation Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission Conservation of Energy Planetary Albedo Selective Absorption and Emission Summary of Interactions between Radiation and Matter Beer's Law and Schwarzchild's Equation Atmospheric Scattering The Solar Spectrum Composition of the Earth's Atmosphere Atmospheric Absorption and Emission of Solar Radiation Atmospheric Absorption and Emission of Thermal Radiation Atmospheric Absorption Bands in the IR Spectrum Atmospheric Absorption Bands in the Microwave Spectrum Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE Microwave Form of RTE5-28

4  + a + r = 1 Energy conservation =  B (T s ) T

5 B =  B (T s ) surface    T s =300 K B =  B (T c ) T c =220 K   Simple case with no atmosphere and opaque cloud cloud 

6 B =  B (T s ) surface    T s =300 K B =  B (T c )+  B (T s )  T c =220 K   Simple case with no atmosphere and semi-trasparent cloud   =1-  

7 Radiative Transfer Equation

8 Transmittance for Window Channels z  1  close to 1 a close to 0 z1z1 z2z2 zNzN  + a + r = 1 The molecular species in the atmosphere are not very active: most of the photons emitted by the surface make it to the Satellite if a is close to 0 in the atmosphere then  is close to 0, not much contribution from the atmospheric layers

9 Trasmittance for Absorption Channels z  1 z1z1 z2z2 zNzN Absorption Channel:  close to 0 a close to 1 One or more molecular species in the atmosphere is/are very active: most of the photons emitted by the surface will not make it to the Satellite (they will be absorbed) if a is close to 1 in the atmosphere then  is close to 1, most of the observed energy comes from one or more of the uppermost atmospheric layers

10 Spectral Characteristics of Atmospheric Transmission and Sensing Systems

11 Weighting Functions  1 z1z1 z2z2 zNzN d  /dz z1z1 z2z2 zNzN

MODIS IR Spectral Bands MODIS

13 H2OH2O H2OH2O O3O3 CO 2 MODIS absorption bands

14 Emission, Absorption Blackbody radiation B represents the upper limit to the amount of radiation that a real substance may emit at a given temperature for a given wavelength. Emissivity  is defined as the fraction of emitted radiation R to Blackbody radiation,  = R /B. In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so a = . Thus, materials which are strong absorbers at a given wavelength are also strong emitters at that wavelength; similarly weak absorbers are weak emitters.

15 Transmittance Transmission through an absorbing medium for a given wavelength is governed by the number of intervening absorbing molecules (path length u) and their absorbing power (k ) at that wavelength. Beer’s law indicates that transmittance decays exponentially with increasing path length - k u (z)  (z   ) = e  where the path length is given by u (z) =   dz. z k u is a measure of the cumulative depletion that the beam of radiation has experienced as a result of its passage through the layer and is often called the optical depth . Realizing that the hydrostatic equation implies g  dz = - q dp where q is the mixing ratio and  is the density of the atmosphere, then p - k u (p) u (p) =  q g -1 dp and  (p  o ) = e. o

16 Emission, Absorption, Reflection, and Scattering If a, r, and  represent the fractional absorption, reflectance, and transmittance, respectively, then conservation of energy says a + r +  = 1. For a blackbody a = 1, it follows that r = 0 and  = 0 for blackbody radiation. Also, for a perfect window  = 1, a = 0 and r = 0. For any opaque surface  = 0, so radiation is either absorbed or reflected a + r = 1. At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths).

17 Radiative Transfer Equation The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I, for a cloudless atmosphere is given by the expression I =  sfc B ( T sfc )  (sfc - top) +   layer B ( T layer )  (layer - top) layers where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

18 When reflection from the earth surface is also considered, the Radiative Transfer Equation for infrared radiation can be written o I =  sfc B (T s )  (p s ) +  B (T(p)) F (p) [d  (p)/ dp ] dp p s where F (p) = { 1 + (1 -  ) [  (p s ) /  (p)] 2 } The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, often called the boundary term and the second term is the spectral radiance emitted to space by the atmosphere directly or by reflection from the earth surface. The atmospheric contribution is the weighted sum of the Planck radiance contribution from each layer, where the weighting function is [ d  (p) / dp ]. This weighting function is an indication of where in the atmosphere the majority of the radiation for a given spectral band comes from.

Earth emitted spectra overlaid on Planck function envelopes CO2 H20 O3 CO2

20 Longwave CO CO2, strat temp CO2, strat temp CO2, upper trop temp CO2, mid trop temp CO2, lower trop temp H2O, lower trop moisture H2O, dirty window Midwave H2O & O window O3, strat ozone H2O, lower mid trop moisture H2O, mid trop moisture H2O, upper trop moisture Weighting Functions

21 Conclusion Radiative Transfer Equation (IR): models the propagation of terrestrial emitted energy through the atmosphere