15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University.

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

Electroweak Penguin B Decays: b→s,d  and b→s,d ll Jeffrey Berryhill University of California, Santa Barbara For the BaBar Collaboration LNS Journal Club.
23, June, 2005Beauty2005, Assisi, Italy Electroweak Penguin decays at Belle Akimasa Ishikawa KEK.
Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
Electroweak and Radiative Penguin Transitions from B Factories Paoti Chang National Taiwan University 2 nd KIAS-NCTS Joint Workshop on Particle Physics,
6/2/2015Attila Mihalyi - Wisconsin1 Recent results on the CKM angle  from BaBar DAFNE 2004, Frascati, Italy Attila Mihalyi University of Wisconsin-Madison.
Charm results overview1 Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
The physics of b s l + l - : 2004 and beyond Jeffrey Berryhill University of California, Santa Barbara January 19, 2004 Super B Factory Workshop University.
Measurements of Radiative Penguin B Decays at BaBar Jeffrey Berryhill University of California, Santa Barbara For the BaBar Collaboration 32 nd International.
CHARM 2007, Cornell University, Aug. 5-8, 20071Steven Blusk, Syracuse University D Leptonic Decays near Production Threshold Steven Blusk Syracuse University.
1 B Physics at CDF Junji Naganoma University of Tsukuba “New Developments of Flavor Physics“ Workshop Tennomaru, Aichi, Japan.
Rare and Radiative B Decays M.-Z. Wang ( 王名儒 ) on behalf of the Belle Collaboration ICFP2005Outline IntroductionIntroduction B → XB → X s γ moments B →B.
Measurements of  and future projections Fabrizio Bianchi University of Torino and INFN-Torino Beauty 2006 The XI International Conference on B-Physics.
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
B Decays to Open Charm (an experimental overview) Yury Kolomensky LBNL/UC Berkeley Flavor Physics and CP Violation Philadelphia, May 18, 2002.
V B-factory constraints on possible New Physics at the LHC S.L. Olsen U of Hawai’i 高能所 北京 Academia Sinica (Taipei) June 12, 2007.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
1. Outline 2 Dr. Prafulla Kumar Behera, IIT Madras 9 th June 2015.
Belle results relevant to LHC Pheno-07 May 8, 2007 Madison Wisc. S.L. Olsen U of Hawai’i.
XLIst Rencontres de Moriond: Electroweak Interactions and Unified Theories New results from BaBar: Rare Meson Decays and the Search for New Phenomena Jeffrey.
1 Disclaimer This talk is not for B physics experts. Taipei101 If you did it, you may check s during my talk. B0B0 B0B0.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Summary of Recent Results on Rare Decays of B Mesons from BaBar for the BaBar Collaboration Lake Louise Winter Institute Chateau Lake Louise February.
Guglielmo De Nardo Napoli University and INFN 7th Meeting on B Physics, Orsay, France, October 4th 2010.
Large electroweak penguin contribution in B decays T. Yoshikawa ( Nagoya ) 基研研究会「CPの破れと物質生成」 2005年 1月1 2日~14日 This talk is based on S. Mishima and T.Y.
CP Violation and CKM Angles Status and Prospects Klaus Honscheid Ohio State University C2CR 2007.
Rare B Decays at Belle Hsuan-Cheng Huang ( 黃宣誠 ) National Taiwan University 2 nd BCP NTU, Taipei June 7 - 9, 2002.
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
Round table Physics at Super-  -c factory 1 Super-  -c factory, BINP, Sep 2008 Some starting points for discussion Super-  -c factory.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Search for CP Violation in B 0  h decays and B 0  h decays with B A B AR International Europhysics Conference on High Energy Physics, July 17 th -23.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
Pavel Krokovny, KEK Measurement of      1 Measurements of  3  Introduction Search for B +  D (*)0 CP K +  3 and r B from B +  D 0 K + Dalitz.
 3 measurements by Belle Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus Method Method Results Results Summary Summary.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
1 Rare Bottom and Charm Decays at the Tevatron Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation.
Rare B Decays with “Missing Energy” Tom Browder (University of Hawaii) Will discuss experimental results from Belle on B   ν (BELLE-CONF-0671) and B.
Summary of  2 measurements at Super KEKB Hirokazu Ishino Tokyo Institute of Technology 19 Dec., 2006.
Working Group 3 Summary: V td, V ts, and Friends Jeffrey Berryhill Laurent Lellouch Mikolaj Misiak Christoph Paus CKM Workshop, UCSD March 18, 2005 K BsBs.
Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,
B  K   p  and photon spectrum at Belle Heyoung Yang Seoul National University for Belle Collaboration ICHEP2004.
Semileptonic Decays from Belle Youngjoon Kwon Yonsei Univ. / Belle.
B. Golob, D Mixing & CPV 1/25Frontier of Particle Physics 2010, Hu Yu Village, Aug 2010 Boštjan Golob University of Ljubljana/Jožef Stefan Institute &
A. Drutskoy, University of Cincinnati B physics at  (5S) July 24 – 26, 2006, Moscow, Russia. on the Future of Heavy Flavor Physics ITEP Meeting B physics.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1 Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
B   and B  D ( * )   decays at BaBar Guglielmo De Nardo University of Napoli “Federico II” and INFN Representing the BaBar collaboration 36 th International.
Andrzej Bożek for Belle Coll. I NSTITUTE OF N UCLEAR P HYSICS, K RAKOW ICHEP Beijing 2004  3 and sin(2  1 +  3 ) at Belle  3 and sin(2  1 +  3 )
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
DCPV/Rare George W.S. Hou (NTU) Beauty Assisi 1 Direct CP and Rare Decays June 21, 2005 B Physics at Hadronic Machines, Assisi.
Guglielmo De Nardo for the BABAR collaboration Napoli University and INFN ICHEP 2010, Paris, 23 July 2010.
Belle and Belle II Akimasa Ishikawa (Tohoku University)
BNM Summary of Present Experimental Results 13-Sep-2006, Y.Sakai (KEK) Based on ICHEP06 results (highlights) CKM:  1 ( & b  s),  2,  3,... Decays.
Measurements of  1 /  Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy, K. Sumisawa (KEK)
Akimasa Ishikawa (Tohoku University)
Improved measurements of B → hh decays at Belle
EW Penguin & Leptonic B decays
Review of b  s l+ l- and B0  l+ l- Decays
Hadronic B Decays at BELLE and BABAR
Radiative and electroweak penguin processes in exclusive B decays
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Charmless Quasi-two-Body Modes at BaBar
Exclusive Semileptonic B Decays and |Vub|: Experimental
Constraints on α from B Decays at BaBar
Presentation transcript:

15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University From LHC to the Universe NTU, Taipei December 15, 2008

15/12/2008from LHC to the UniverseP. Chang 2 KM Mechanism CP violation is due to a complex phase in quark mixing matrix CP violation is due to a complex phase in quark mixing matrix 1()1() 2()2() 3()3() V td V* tb V cd V* cb V ud V* ub Unitarity Matrix V ud V* ub + V cd V* cb + V td V* tb = 0

15/12/2008from LHC to the UniverseP. Chang 3 Nobel Prize 2008

15/12/2008from LHC to the UniverseP. Chang 4 Time dependent CP Asymmetry Asymmetry in  t shape implies ICPV. Difference in area indicates DCPV

15/12/2008from LHC to the UniverseP. Chang 5 Measurement in Principle Fully reconstruct a CP eigenstate. Determine the flavor the tag side. From the distance of the two B decay vertices to measure the decay time difference.

15/12/2008from LHC to the UniverseP. Chang 6 Is there New physics? Is KM mechanism the source of CPV? Is KM mechanism the source of CPV? (Main reason why B factory was built?) (Main reason why B factory was built?) Is it the only source? New Physics? Is it the only source? New Physics? NP may appear in rare B decays. NP may appear in rare B decays. clean probe for NP.  Bs not covered clean probe for NP.  Bs not covered Current Universe   SM not enough Direct or Indirect CP violation, branching fraction …

15/12/2008from LHC to the UniverseP. Chang 7 The Duel of B Factories Mt. Tsukuba

15/12/2008from LHC to the UniverseP. Chang 8 Successful Operation peak L =1.71x10 34 peak L =1.21x10 34 B Factory is also a  charm factory. Bs physics can be studied when runs at  (5S)

15/12/2008from LHC to the UniverseP. Chang 9 Results Results

15/12/2008from LHC to the UniverseP. Chang 10 Measurement of  1 /  CP violation in the B system was already established.

15/12/2008from LHC to the UniverseP. Chang 11 From all Measurements B factories:  1 ~2 o,  2 ~10 o,  3 ~15 o -30 o

15/12/2008from LHC to the UniverseP. Chang 12 Time dependent CPV in b → s Penguin +  sin2   /sin2  golden mode d d s s s   S ~ 0 Stand Model New physics phase in the loop causes deviation May have tree pollution. Theoretical expectation: for penguin dominant modes  S>0 within 0.05 Clean signals for new physics  S = sin2  1 (sqq) – sin2  1 (ccs) S f = sin2  1 ; C f =  A d d s s s

15/12/2008from LHC to the UniverseP. Chang 13  S results before ICHEP 2008 PRL 99, (2007) Based on KKK Dalitz analysis PRL 98, (2007) 535 M  ' K  : sin2  1eff : +0.64± 0.10 ± 0.04 For most modes,  S(SM) is positive.

15/12/2008from LHC to the UniverseP. Chang 14 Decay Modes with Updated Results Class A:  ’ K 0,  K S  Same method as J/  K 0 Class A:  ’ K 0,  K S  Same method as J/  K 0 Class B: K 0   Class B: K 0   Class C:     K S, K + K  K S Class C:     K S, K + K  K S Class D:  K S    Class D:  K S    Class is characterized by the analysis complexity. No tracks on B decay vertex. Require tacks with SVD hits. Perform fit by constraining C. Model the Dalitz distributions. Many parameters: phase, S and C for each mode …. Low statistics. Need to know the CP content. Use results from  K    

15/12/2008from LHC to the UniverseP. Chang 15  1 measured with penguins

15/12/2008from LHC to the UniverseP. Chang 16 Time dependent Dalitz

15/12/2008from LHC to the UniverseP. Chang 17  1 /  with all penguin modes

15/12/2008from LHC to the UniverseP. Chang 18 Direct CP Violation in B → K  Decays Belle Results: Nature 452, 332 (2008) A cp (K    ) = {  Belle  BaBar    CDF  CLEO A cp (K    ) = {  BaBar  Belle  CLEO 2.0  AVG  AVG  A K  =  cp (K   -  A cp (K    ) = 5.3    New Update

15/12/2008from LHC to the UniverseP. Chang 19  A K  Puzzle T /T P TP CP EW Expectation from current theory T & P are dominant   A K  ~ 0 Enhancement of large C with large strong phase to T  strong inter. !? Yoshikawa 2003; Mishima & Yoshikawa 2004; Buras et. al. 2004, 2006; Baek & London 2007; Hou et. al. 2007; Feldmann, Jung & Mannel 2008 Enhancement of large P EW  New physics Chiang et. al Li, Mishima & Sanda 2005

15/12/2008from LHC to the UniverseP. Chang 20 Model independent checks for NP M. Gronau, PLB 627, 82 (2005); D. Atwood & A. Soni, Phys. Rev. D 58, (1998). B  → K    P dominants.  A cp (K    )~ 0 B  → K    A cp (K    )  A(K  ) Sum rule predicts A cp (K    ) =  0.151±0.043 A cp (K    )= 0.009±0.025 A =  ± 0.13 ± 0.03 World Average Sum rule A =  0.14 ± 0.13 ± 0.06 Important topic for Super B factory New HFAG AVG:  0.01 

15/12/2008from LHC to the UniverseP. Chang 21 First observation of direct CP violation in charged B decays Dalitz analysis on         Dalitz analysis on               383M BB, PRD78, , 08 A CP (B ± →   K ± ) =  (+44±10±4  55  A CP (B ± →   K ± ) =  (+41±10±3  33 77 657M BB, BELLE-CONF-0827    f    K+K+     B+ all cos  >0 cos  0

15/12/2008from LHC to the UniverseP. Chang 22 B  →  ) x 10  B  →  ) x 10   B  →   B  →   In SM, decay rate related to decay constant and V ub Charged Higgs may contribute to BF.  B (B →  )= ( 0.78 )x10  (CKM fitter 2008 prediction)   Previous results: Belle hadronic tagBaBar hadronic & semileptonic tags 447 M BB  with 3.5  383 M BB  with   destructive W.S. Hou, PRD 48, 2342 (1993)

15/12/2008from LHC to the UniverseP. Chang 23 New Belle Result on B  →   New Belle Result on B  →       NEW with 3.8  657 M BB with D ( * ) l tag N sig = 154 (stat) (syst) exclude signals Larger parameter space  B (  →  ) = (1.65 )x10    Tag on D ( * ) l Search for  →e , ,  Check extra energy in ECAL Understand background from the control sample

15/12/2008from LHC to the UniverseP. Chang 24 New BaBar Result on B  →   New BaBar Result on B  →   Tag on D ( * ) l  look for  →e, , , 

15/12/2008from LHC to the UniverseP. Chang 25 Tension in the CKM fit BaBar ( B x10 4 ) Had. Tags1.79 Dl Tags ±0.8±0.1   Belle ( B x10 4 )    1.8 ±0.4   My Avg. B = (1.73±0.35)x10  CKM fitter obtained B = (0.78 ) x10    deviation = 2.6  B = (1.2 ±0.4) x10 -4 using Note that interference is destructive in 2HDM (type II). B > B SM implies that H  contribution dominates

15/12/2008from LHC to the UniverseP. Chang 26 B (B →  ) vs sin2  1 /2  Using ratio, the relation is independent of f B and Vub Belle and BaBar will have new updates soon. Good topics for the future Super B factory 1  deviation

15/12/2008from LHC to the UniverseP. Chang 27 B→Xs B→Xs B→Xs B→Xs  Belle update with E  >1.7 GeV: arXiv: SM NNLO calculation: HFAG 2008: B ( B →X s  = (3.52 ±0.25)x10  E  > 1.6 GeV Misiak et al. B ( B →X s  ) | E  > 1.6 GeV = (2.98±0.26)x10  (3.47±0.49)x10  Anderson Gardi { SM (3.15±0.23)x10  New physics Becher Neubertv E  min

15/12/2008from LHC to the UniverseP. Chang 28 Charged Higgs Bound HFAG 2008  M H + > 300 GeV/c 95% C.L. for all tan  The 95% lower bound of charged Higgs mass as a function of B (B → X s  ) and its error.

15/12/2008from LHC to the UniverseP. Chang 29 b → s l  l  b → s l  l  Loop dominant  Small BF ; good place for new physics! Loop dominant  Small BF ; good place for new physics! Contributions from three coefficients: Contributions from three coefficients: C 7 : EM penguin; C 9 (C 10 ): vector (axial vector) part of weak diagrams C 7 : EM penguin; C 9 (C 10 ): vector (axial vector) part of weak diagrams More observables sensitive to NP: More observables sensitive to NP: eff  FB lepton asymmetry, A FB  K* polarization, FL  CP asymmetry, A CP  Isospin asymmetry  e  ratio A FB (q 2 ): e  e       indication of Z 0 s l  l  b  s l  l   L eff =  C i O i, C i (short distance effect). SM expects real C i SM 

15/12/2008from LHC to the UniverseP. Chang 30 Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 Good agreement with SM BF B  K*llB  Kll 657M, NEW BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 FPCP M  0.5   Belle, ICHEP 08  BABAR, FPCP 08  Melikhov et. al (quark model, PLB 410, 1997)  Ali (PRD 66, , 290, 2002) Veto events in the J/  and  ’ regions photon pole

15/12/2008from LHC to the UniverseP. Chang 31 Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 Good agreement with SM BF B  K*llB  Kll 657M, NEW BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 FPCP M  0.5   Belle, ICHEP 08  BABAR, FPCP 08  Melikhov et. al (quark model, PLB 410, 1997)  Ali (PRD 66, , 290, 2002) Veto events in the J/  and  ’ regions  Belle, 08 ’ ICHEP  BABAR, 08 ’ FPCP  CDF, 06 ’ CKM Ali 02 ’ photon pole

15/12/2008from LHC to the UniverseP. Chang 32 Lepton Flavor & CP Asymmetries A CP In SM, R K ~ 1.33 and R K ~1.0. R K is sensitive to the size of photon pole. R K >1.0 in the two Higgs doublet model with large tanβ. (Y. Wang and D. Atwood, PRD 68, , 2003)   R K =  B (B → K ( * ) ee) B (B → K ( * )  )

15/12/2008from LHC to the UniverseP. Chang 33 Unexpectedly Large Isospin Asymmetry? 

15/12/2008from LHC to the UniverseP. Chang 34 K* Helicity Distribution Obtain FL by a fit:

15/12/2008from LHC to the UniverseP. Chang 35 Anomalous A FB (q 2 ) in B → K ( * ) ll ? Obtain A FB by a fit: 657 M BB 384 M BB Data show positive A FB at low q 2, while the SM predicts negative A FB. At high q 2, data above the SM expectation. Efficiency corrected

15/12/2008from LHC to the UniverseP. Chang 36 Conclusion Results start to probe NP but limited by statistics:  →  A FB, isospin asymmetry B (B  Xs  ) strong constraint to NP N eed much more data to confirm the  S puzzle.  A explanation  if from new physics, what is it? LHCb:  Bs, A FB on K*ll, Bs,d  ll, … Super B factory: B →  K*  cp       Look for the approval of Super KEKB in 2009! 

15/12/2008from LHC to the UniverseP. Chang 37 Backup Slides

15/12/2008from LHC to the UniverseP. Chang 38 More on A FB C 7 =  C 7 ? If yes, B will change! The sign of C 7 is constrained by B (Xsll). C may be complex due to new physics. SM Gambino et. al, PRL94, , 05 Hou et. Al, PRD77, , 08 Points LHCb 2 fb  1 MC Dashed area: complex C Black line: SM Blue: 4th generation ŝ = q 2 /M 2 (l  l  )

15/12/2008from LHC to the UniverseP. Chang 39 Direct CP Violation on B → X s  BaBar measurement using sum of 16 exclusive modes arXiv: M BB SM expectation by Kagan & Neubert, PRD58, (1998) A CP ~ (0.5±0.2)%  small CP asymmetry A CP =  ± (stat.) ± (syst.)

15/12/2008from LHC to the UniverseP. Chang 40 tCPV on Radiative Penguin No CPV seen before; this conference: No CPV seen before; this conference: K* region K0K0K0K0 K   KKKK 1.2<M(K  )< B0B0 K*0K*0 LL B0B0 K*0K*0 RR M 12  R m s /m b suppressed  L m s /m b suppressed Interference suppressed in SM

15/12/2008from LHC to the UniverseP. Chang 41 TCPV on B   K    K L    evts K S    evts First Try NEW 556 ± 32 evts For S, use candidates with SVD hits For C, all signals

15/12/2008from LHC to the UniverseP. Chang 42 TCPV on B   K    K L    evts K S    evts First Try NEW 556 ± 32 evts For S, use candidates with SVD hits For C, all signals BaBar Belle S +0.55±0.20±0.03  0.67±0.31±0.08 C=  A  0.13±0.13±0.03  0.14±0.13±0.06

15/12/2008from LHC to the UniverseP. Chang 43 TCPV on  ' K ,  K S and  K S   NEW 467 M BB  S  C =  A  ' K   0.57±0.08±0.02  0.08±0.06±0.02  K S  0.55 ±0.02  0.52 ±0.03  K S        0.97  0.20±0.14±0.06  0.26  0.29  0.22  0.20  0.03  0.52 final dataset See Hirschauer’s talk for details. For  K   , polarizations, yields, Acp … are constrained with  K    KK

15/12/2008from LHC to the UniverseP. Chang 44 T-dependent Dalitz on     K  657 M BB NEW (K S     NR    K S    NR        NR K S K*     K*         Decay modes considered  f   K S  f   K S  f X  K   difference as systematic errors S

15/12/2008from LHC to the UniverseP. Chang 45 T-dependent Dalitz on K  K  K  657 M BB NEW Model uses  f   K S   K S  f X  K S   c   K S  K S  K   NR K   K  K   NR K S S

15/12/2008from LHC to the UniverseP. Chang 46 Future Prospects for A FB (q 2 ) SuperB 5ab  MC study of SuperB SuperB 50 ab  MC study of SuperB  b   EXP, SM MSSM C 7geff >0 ATLAS 30 fb  LHCb  fb 

15/12/2008from LHC to the UniverseP. Chang 47 Future Prospects for A FB (q 2 ) SuperB 5ab  MC study of SuperB SuperB 50 ab  MC study of SuperB  b   EXP, SM MSSM C 7geff >0 ATLAS 30 fb  LHCb  fb  CDF and D0, please contribute!