+ IGRINS spectroscopy of Class I sources, IRAS 03445+3242 & IRAS 04239+2436 Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

The formation of stars and planets Day 3, Topic 3: Irradiated protoplanetary disks Lecture by: C.P. Dullemond.
Planet Formation Topic: Disk thermal structure Lecture by: C.P. Dullemond.
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Massive YSOs and the transition to UCHIIs.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
M. Emprechtinger, D. Lis, P. Schilke, R. Rolffs, R. Monje, The Chess Team.
Imaging Arp 220 in CO 6-5 and dust at 100 pc resolution with ALMA C. Wilson, (McMaster); N. Rangwala, J. Glenn, P. Maloney, J. R. Kamenetzky (Colorado);
A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris.
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi.
A Survey of Velocity Features in Perseus Michelle Borkin Senior Thesis Presentation May 12, 2006.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Modelling the Broad Line Region Andrea Ruff Rachel Webster University of Melbourne.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
JEDI meeting OA Capodimonte, April 9 th -10 th 2015 Simone Antoniucci INAF – Osservatorio Astronomico di Roma Elisabetta Rigliaco, Juan Alcalà, Brunella.
U. Western Ontario Protoplanetary Disk Workshop, 19 May William Forrest (U of Rochester) Kyoung Hee Kim, Dan Watson, Ben Sargent (U. of R.) and.
E-ELT/HIRES on young stars: Star - protoplanetary disk interaction
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
GBT radio recombination lines (GBT-5) Single Dish Summer School July 2009.
Radiation Kirchoff’s Laws  Light emitted by a blackbody, a hot opaque body, or hot dense gas produces a continuous spectrum  A hot transparent gas produces.
Advisor: Robin Ciardullo George Jacoby, John Feldmeier, Pat Durrell Kimberly Herrmann July 2 nd, 2005 Penn State Planetary Nebula Studies of Face-On Spiral.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
The Photometric and Spectral Evolution of the 2008 NGC 300 Transient Roberta M. Humphreys University of Minnesota Prieto 2008 from Spitzer 2003, 2007 Discovery.
HH s at NIR ObservationsDiagnosis.  NKL  Trapezium  OMC1-S (L = 10 5 L o t
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
The planetary nebula M2-9: Balmer line profiles of the nuclear region Silvia Torres-Peimbert 1 Anabel Arrieta 2 Leonid Georgiev 1 1 Instituto de Astronomía,
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Large-Scale Winds in Starbursts and AGN David S. Rupke University of Maryland Collaborators: Sylvain Veilleux D. B. Sanders  v = km s -1 Rupke,
The excess emission in Classical T Tauri Stars Jorge Filipe S. Gameiro DMA, Faculdade de Ciências Universidade do Porto Centro de Astrofísica da Universidade.
Central Engine of AGN Xi’ian October 2006 Black Hole Mass Measurements with Adaptive Optic Assisted 3D-Spectroscopy Courtesy ESO Guia Pastorini Osservatorio.
Do YSOs host a wide-angled wind? - NIR imaging spectroscopy of H 2 emission - 3. Spectro-Imaging using Gemini-NIFS Subaru UM, 1/30/2008 Hiro Takami (ASIAA)
Spectropolarimetry Bag Lunch Seminar - Dec 2003 Outline 1.Background 2.Applications a)Studying the transition from AGB to post-AGB; b)Probing the structure.
Schematic Picture of Region close to protostar From Matt & Pudritz (2005) disk envelope outflow.
ALMA Observations of Keplerian Disks around Protostars: the case of L1527 Nagayoshi Ohashi (NAOJ) NMA With K. Saigo, Y. Aso, S.-W. Yen, S. Takakuwa, S.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
Near-Infrared Spectroscopic Study of AA Tau Logan R. Brown Erika L. Gibb Nathan X. Roth University of Missouri – St. Louis.
ALMA Observations of proto-planetary disks I HD – P.I. Casassus 2013 Nature 493, 191 Herbig Ae star 140 pc, 2 Myr, 1.9 M , disk mass 0.1 M  Left:
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
Studying Infall Neal J. Evans II.
Milli-arcsecond Imaging of the Inner Regions of Protoplanetary Disks Stéphanie Renard In collaboration with F. Malbet, E. Thiébaut, J.-P. Berger & M. Benisty.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
( 1: Kobe University, 2: Nagoya University, 3: NAOJ) ☆ Abstract ☆ We obtained a high spatial resolution (FWHM ~ 0.1”) near-infrared image of XZ Tau, a.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Warm, Dense Gas Near the Massive Protostar AFGL 2136 IRS 1 as Revealed by Absorption from the ν 1, ν 2, and ν 3 Bands of Water Nick Indriolo 1, David Neufeld.
C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
The University of Sheffield Joanna Holt 20 th October 2006 Emission line outflows: the evidence for AGN-induced feedback Clive Tadhunter.
The Study of Exoplanetary Atmosphere with IGRINS Keun-Hong Park Seoul National University.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
THE SPATIAL DISTRIBUTION OF LARGE AND SMALL DUST GRAINS IN TRANSITIONAL DISKS ELIZABETH GUTIERREZ VILLANOVA UNIVERSITY 2015 SOCORRO COHORT STUDENT ADVISOR:
VLT Integral Field Spectroscopy of Embedded Protostars Near-IR emission lines as tracers of accretion and outflow Chris Davis Joint Astronomy Centre Hilo,
Deuterium-Bearing Molecules in Dense Cores
Tae-Soo Pyo Subaru Telescope/NAOJ
Mariko KATO (Keio Univ., Japan) collaboration with
Infrared integral field spectroscopic observations of globules (cometary knots) in the Helix Nebula (NGC 7293) Mikako Matsuura National Astronomical Observatory.
Accretion Processes in Star Formation
9-10 Aprile Osservatorio Astronomico di Capodimonte
Infrared study of a star forming region, L1251B
A Study of Accretion Disks Around Young Binary Star Systems
Inner warm disk of Class I ESO Hα 279a revealed by Na I and CO overtone emission lines A-Ran Lyo, Jongsoo Kim, Jae-Joon Lee, Kyoung-Hee Kim, Jihyun Kang,
Presentation transcript:

+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder 3, Gregory Mace 3, and Daniel T. Jaffe 3, 1 KHU, 2 KASI, 3 Univ. of Texas, IGRINS NICMOS [Fe II] um H um 12CO 2-1 IRAS IRAS Preliminary results of IGRINS Survey of Protoplanetary Disks (Korean legacy program)

+ Contents Introduction Targets Previous works CO overtone emission Observation & Data reduction Model Results & Discussions Summary 2

+ Targets : Class I sources Low spectral resolution NIR spectroscopy High veiling excess Contamination of photospheric lines is small!! 3 IRAS IRAS R.A.03:47: :36:56.30 Dec.+32:51: :43:35.3 D (pc) L bol (L ʘ ) Ks (mag) Av (mag)1025 Other nameB5-IRS 5 HH 366 VLA 1 HH 300 VLA 1 Connelley & Greene (2010)

+ Previous works: VLT integral field spectroscopy 4 cont μm Br γ μm H 2 S(0) μm [Fe II] μm Davis et al. (2011) R ~ 1500 Accretion tracer : Br γ Jet & outflow : [Fe II], H 2 Disk : CO overtone Na I, Ca I, Mg I

+ CO overtone (∆v=2) rovibrational emission Emitted from hot ( K) and dense (n > cm -3 ) gas (Calvet et al. 1991, Martin 1997) ~0.15 AU of Keplerian disk in T Tauri & Herbig Ae/Be stars (e.g. Najita et al. 1996, 2009; Thi et al. 2005) CO overtone band head profile → disk rotation 5 Rings of constant rotational velocities (Kraus et al. 2000)

+ Observation & Data Reduction Observation IRAS on 20 Jan IRAS on 26 & 27 Nov (twice) Calibration with the IGRINS Pipeline (Jae-Joon Lee) Telluric line correction with the observation of A0 stars. the difference in airmass and changes in wavelength solution are also considered (0 th order approximation). HI recombination lines in A0 stars are corrected by using Vega spectrum (Gaussian-convolved with a fitted V rot ) Absolute flux calibration using 2MASS data. 6

+ CO band of IRAS v= 2-0 v= 3-1 v= 4-2 v= 5-3 Broad bandhead Double peak s in isolated lines Narrow absorption lines

+ Model : CO overtone emission Modified from Najita et al. (1996) 8 parameters for disk model (4 free parameters ) V 0 (at inner radius) : V max = V 0 r -0.5 (Keplerian rotation) T 0 & p (=0.5) : T gas = T 0 r –p N 0 & q (=1.5) : N(CO) = N 0 r –q β : the ratio of R out / R in : T gas (R out )= 1000 K, (R in = 1) FWHM (line width) V LSR : radial velocity of source For given T gas, N(CO), and FWHM (assuming Gaussian line profile), a local spectrum is calculated using CO molecular data from HITRAN. Then, a spectrum at a given annulus is calculated by the convolution with the profile of the thin rotating annulus: 8

+ Visual extinctions : HI ratio of Br γ (2.166) / 10-4 (1.737) Brackett decrement in active T Tauri stars is consistent with case B recombination theory at high densities though relatively low temperatures (n e ~ cm -3 & T e ≤ 2000 K) (Bary et al. 200 HI line ratio from Hummer & Storey (1987) with n e ~10 9 cm -3 & T e = 1000 K 9 Av IRAS ± 0.06 IRAS (26) 38.2 ± 0.06 IRAS (27) 38.1 ± 0.05 cf. Av = 39 ±4 for I04 (Davis et al. 2011) Rieke & Lebofsky (1985)

+ 10 Results: Emission from the inner hot disk IRAS : V in =100 kms -1, FWHM = 40 km s -1 IRAS : V in =125 kms -1, FWHM = 30 km s -1

+ 11 Results & Discussions : M star, R in, and inclination Inclination : Arce & Goodman (2001), Davis et al iM star R in (AU)R 2000K (AU) IRAS IRAS In T -Tauri and Herbig Ae /Be stars, most CO overtone emission is radiated inside of ~ 0.15 AU. (Berthoud et al. 2007, Eisner et al. 2014)

+ 12 Results & Discussions: CO (v= 0  2) Absorption Lines R(J) : J  J +1, v=0  2 P(J) : J  J -1, v=0  2

+ Results & Discussions: Narrow CO absorption lines Assumption : LTE + optically thin 13 Blueshifted warm gas  wind or outflow

+ Cartoon of disk derived from the CO overtone transitions 14 Scale is not linear!! V rot ~100 km s -1 V wind/outfow ~5 km s -1 ≤ ~ 0.15 AU