6.4 Exponential Growth and Decay. The number of bighorn sheep in a population increases at a rate that is proportional to the number of sheep present.

Slides:



Advertisements
Similar presentations
Ch 6.4 Exponential Growth & Decay Calculus Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy.
Advertisements

Exponential Growth and Decay
Section 6.7 – Financial Models
Exponential Functions Functions that have the exponent as the variable.
Differential Equations Definition A differential equation is an equation involving derivatives of an unknown function and possibly the function itself.
6.2 Growth and Decay Law of Exponential Growth and Decay C = initial value k = constant of proportionality if k > 0, exponential growth occurs if k < 0,
Diff EQs 6.6. Common Problems: Exponential Growth and Decay Compound Interest Radiation and half-life Newton’s law of cooling Other fun topics.
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
Differential Equations
Exponential Growth and Decay CalculusLesson 7-2 Mr. Hall.
Logarithmic and Exponential Functions
WARM-UP: (1,3) (1.5,4.5) (2,7.875) (2.5, 15.75) (3, )
Warmup 1) 2). 6.4: Exponential Growth and Decay The number of bighorn sheep in a population increases at a rate that is proportional to the number of.
Exponential Growth & Decay Modeling Data Objectives –Model exponential growth & decay –Model data with exponential & logarithmic functions. 1.
Sullivan PreCalculus Section 4
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
Exponential Growth and Decay 6.4. Exponential Decay Exponential Decay is very similar to Exponential Growth. The only difference in the model is that.
4.8 Exponential and Logarithmic Models
CHAPTER 5 SECTION 5.6 DIFFERENTIAL EQUATIONS: GROWTH AND DECAY
Section 6.4 Solving Logarithmic and Exponential Equations
Exponential Growth and Decay
Imagine this much bacteria in a Petri dish Now this amount of the same bacteria Assuming that each bacterium would reproduce at the same rate, which dish.
Day 4 Differential Equations (option chapter). The number of rabbits in a population increases at a rate that is proportional to the number of rabbits.
Section 7.4: Exponential Growth and Decay Practice HW from Stewart Textbook (not to hand in) p. 532 # 1-17 odd.
Chapter 3 – Differentiation Rules
Applications and Models: Growth and Decay
Differential Equations Copyright © Cengage Learning. All rights reserved.
6 Differential Equations
Consider: then: or It doesn’t matter whether the constant was 3 or -5, since when we take the derivative the constant disappears. However, when we try.
EXPONENTIAL GROWTH & DECAY; Application In 2000, the population of Africa was 807 million and by 2011 it had grown to 1052 million. Use the exponential.
Section 6 Chapter Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Exponential and Logarithmic Equations; Further Applications.
Review of Chapter 8. Graphing Exponential Functions: Make and table and graph the function for the domain {0, 1, 2, 3} Plug in 0, 1, 2, and 3 in for x.
7.4 B – Applying calculus to Exponentials. Big Idea This section does not actually require calculus. You will learn a couple of formulas to model exponential.
The number of bighorn sheep in a population increases at a rate that is proportional to the number of sheep present (at least for awhile.) So does any.
Exponential Growth and Decay; Newton’s Law; Logistic Models
Exponential Growth and Decay 6.4. Slide 6- 2 Quick Review.
Background Knowledge Write the equation of the line with a slope of ½ that goes through the point (8, 17)
Any population of living creatures increases at a rate that is proportional to the number present (at least for a while). Other things that increase or.
Modeling using Logarithms
Chapter 2 Solutions of 1 st Order Differential Equations.
Aim: Growth & Decay Course: Calculus Do Now: Aim: How do we solve differential equations dealing with Growth and Decay Find.
Differential equations and Slope Fields Greg Kelly, Hanford High School, Richland, Washington.
6.2 Solving Differential Equations Modeling – Refers to finding a differential equation that describes a given physical situation.
Ch. 7 – Differential Equations and Mathematical Modeling 7.4 Solving Differential Equations.
6.4 Applications of Differential Equations. I. Exponential Growth and Decay A.) Law of Exponential Change - Any situation where a quantity (y) whose rate.
6.4 Exponential Growth and Decay Law of Exponential Change Continuously Compounded Interest Radioactivity Newton’s Law of Cooling Resistance Proportional.
Exponential and Logarithmic Functions 4 Copyright © Cengage Learning. All rights reserved.
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
 Suppose you deposit $800 in an account that pays 6.3% annual interest. How much will you have 8 years later if the interest is (a) compounded.
Oh Sheep! 11.5 Exponential Growth and Decay
DIFFERENTIAL EQUATIONS
Differential Equations
Antiderivatives with Slope Fields
Differential Equations
7-4 Exponential Growth and Decay
6.4 Growth and Decay.
Derivatives and Integrals of Logarithmic and Exponential Functions
Drill.
Chapter 9.3: Modeling with First-Order Differential Equations
6.4 Exponential Growth and Decay, p. 350
6.2 Exponential Growth and Decay
7.4 Exponential Growth and Decay
6.4 day 2 Exponential Growth and Decay
6.2 Differential Equations: Growth and Decay (Part 1)
Differential Equations
6.4 Applications of Differential Equations
7.4 Exponential Growth and Decay Glacier National Park, Montana
Exponential Growth and Decay Glacier National Park, Montana
6.2 Differential Equations: Growth and Decay (Part 2)
Presentation transcript:

6.4 Exponential Growth and Decay

The number of bighorn sheep in a population increases at a rate that is proportional to the number of sheep present (at least for awhile.) So does any population of living creatures. Other things that increase or decrease at a rate proportional to the amount present include radioactive material and money in an interest-bearing account. If the rate of change is proportional to the amount present, the change can be modeled by:

Rate of change is proportional to the amount present. Divide both sides by y. Integrate both sides.

Exponentiate both sides. When multiplying like bases, add exponents. So added exponents can be written as multiplication.

Exponentiate both sides. When multiplying like bases, add exponents. So added exponents can be written as multiplication. Since is a constant, let.

At,. This is the solution to our original initial value problem.

Exponential Change: If the constant k is positive then the equation represents growth. If k is negative then the equation represents decay. Note: This lecture will talk about exponential change formulas and where they come from. The problems in this section of the book mostly involve using those formulas.

Modeling Growth At the beginning of summer, the population of a hive of hornets is growing at a rate proportional to the population. From a population of 10 on May 1, the number of hornets grows to 50 in thirty days. If the growth continues to follow the same model, how many days after May 1 will the population reach 100?

Continuously Compounded Interest If money is invested in a fixed-interest account where the interest is added to the account k times per year, the amount present after t years is: If the money is added back more frequently, you will make a little more money. The best you can do is if the interest is added continuously.

Of course, the bank does not employ some clerk to continuously calculate your interest with an adding machine. We could calculate: but we won’t learn how to find this limit until chapter 8. Since the interest is proportional to the amount present, the equation becomes: Continuously Compounded Interest: You may also use: which is the same thing. (The TI-89 can do it now if you would like to try it.)

Radioactive Decay The equation for the amount of a radioactive element left after time t is: This allows the decay constant, k, to be positive. The half-life is the time required for half the material to decay.

Half-life Half-life:

Using Carbon-14 Dating Scientists who use carbon-14 dating use 5700 years for its half-life. Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

Newton’s Law of Cooling Espresso left in a cup will cool to the temperature of the surrounding air. The rate of cooling is proportional to the difference in temperature between the liquid and the air. (It is assumed that the air temperature is constant.) If we solve the differential equation: we get: Newton’s Law of Cooling where is the temperature of the surrounding medium, which is a constant. 

Newton’s Law of Cooling

Using Newton’s Law of Cooling A hard boiled egg at 98ºC is put in a pan under running 18ºC water to cool. After 5 minutes, the egg’s temperature is found to be 38ºC. How much longer will it take the egg to reach 20ºC?