Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

TPAC: A 0.18 Micron MAPS for Digital Electromagnetic Calorimetry at the ILC J.A. Ballin b, R.E. Coath c *, J.P. Crooks c, P.D. Dauncey b, A.-M. Magnan.
A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague TWEPP TWEPP-07 Topical Workshop on Electronics for Particle.
SPIDER Silicon Pixel Detector R&D  Birmingham University (N. Watson, J. Wilson, R. Staley), Bristol University (J. Goldstein, D. Cussans, R. Head, S.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
MAPS ECAL Nigel Watson Birmingham University  Overview  Testing  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta,
Tera-Pixel APS for CALICE Progress meeting, 17 th September 2007 Jamie Crooks, Microelectronics/RAL.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
1 Instrumentation DepartmentMicroelectronics Design GroupR. Turchetta 3 April 2003 International ECFA/DESY Workshop Amsterdam, 1-4 April 2003 CMOS Monolithic.
Ivan Peric, Monolithic Detectors for Strip Region 1 CMOS periphery.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology Large Area Monolithic Active Pixel Sensors.
Development of Advanced MAPS for Scientific Applications
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
7 Nov 2007Paul Dauncey1 Test results from Imperial Basic tests Source tests Firmware status Jamie Ballin, Paul Dauncey, Anne-Marie Magnan, Matt Noy Imperial.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
MAPS for a “Tera-Pixel” ECAL at the International Linear Collider J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
18 Sep 2008Paul Dauncey1 The UK MAPS/DECAL Project Paul Dauncey for the CALICE-UK MAPS group.
Active Pixel Sensors in Nuclear Medicine Imaging RJ Ott, N Evans, P Evans, J Osmond, A Clark, R Turchetta Physics Department Institute of Cancer Research.
J. Crooks STFC Rutherford Appleton Laboratory
Andrei Nomerotski 1 PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors Mark Brouard, Edward Halford, Jason Lee, Craig Slater, Claire Vallance,
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
Advanced Pixel Architectures for Scientific Image Sensors Rebecca Coath, Jamie Crooks, Adam Godbeer, Matthew Wilson, Renato Turchetta CMOS Sensor Design.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
HEXITEC ASIC – A Pixellated Readout Chip for CZT Detectors Lawrence Jones ASIC Design Group Science and Technology Facilities Council Rutherford Appleton.
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
4 Jun 2008Paul Dauncey1 Crosstalk and laser results Paul Dauncey, Anne-Marie Magnan, Matt Noy.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
MAPS ECAL Nigel Watson Birmingham University  Technical Status  Future Plans  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov,
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
9 Sep 2008Paul Dauncey1 MAPS/DECAL Status Paul Dauncey for the CALICE-UK MAPS group.
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration LCWS2008, 17 November 2008 Column Parallel CCD and Raw Charge Storage.
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Marcel Stanitzki 1 The MAPS ECAL Status and prospects Fermilab 10/Apr/2007 Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Progress with GaAs Pixel Detectors
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
A MAPS-based readout of an electromagnetic calorimeter for the ILC
Update on DECAL studies for future experiments
HV-MAPS Designs and Results I
Presentation transcript:

Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group Rutherford Appleton Laboratory, Oxfordshire, UK

2  CMOS Image RAL  The INMAPS process and its silicon proof  Conclusions Outline

Overall view CMOS image sensor activity started in 1998 (aka Monolithic Active Pixel Sensor; MAPS) 1 st tape-out in 2000: test structures for the Star-Tracker in 0.5 and 0.7  m 1 st full-scale sensor submitted in May 2001: the Star-Tracker in 0.5  m Use of technologies down to 0.18  m Use of CIS (CMOS Image Sensors) technologies Patented, silicon-proofed INMAPS technology for high-end sensors Pixel size from 2  m upwards Large pixels IPs 4T pixel Ips Low noise pixel IPs Wafer-scale (200mm) sensor capability Over 40 years of cumulated design experience 3

The Large Area Sensor (LAS) Sensors of different sizes on the same 200mm wafer 0.35  m CMOS Basic unit 270x270 pixels X5  1350x1350 X2  540x540 X1  270x270 Wafer-scale possible 4

Region of Reset readout No ROR Image of a laser point ROR readout T int0 = 80, T int1 = 30, T int2 = 1 >140dB 5

6 NMOS P-Well N-Well P-Well N+ P-substrate (~100s  m thick) N+ N-Well P+ Diode NMOS PMOS 100 % efficiency  only NMOS in pixel  no complicated electronics Complicated electronics  NMOS and PMOS,i.e. CMOS  low efficiency How much CMOS in a CMOS sensor?

NMOS P-Well N-Well P-Well N+ P-substrate (~100s  m thick) N+ N-Well P+ Diode NMOS PMOS The INMAPS process Deep P-Well Standard CMOS with additional deep P-well implant. Quadruple well technology. 100% efficiency and CMOS electronics in the pixel. Optimise charge collection and readout electronics separately! Proved on 0.18  m 7 metal layers Analog & 1.8v & 3.3v Choice of epi layers (5 and 12  m tested so far) 7

8 INMAPS Proof of principle Alternative to CALICE Si/W analogue ECAL No specific detector concept “Swap-in” solution leaving mechanical design unchanged Tungsten 1.4 mm PCB ~0.8 mm Embedded VFE ASIC Silicon sensor 0.3mm Diode pad calorimeter MAPS calorimeter

preShape Gain 94uV/e Noise 23e- Power 8.9uW 150ns “hit” pulse wired to row logic Shaped pulses return to baseline Pixel Architectures preSample Gain 440uV/e Noise 22e- Power 9.7uW 150ns “hit” pulse wired to row logic Per-pixel self- reset logic 9 9

preShape Pixel 4 diodes 160 transistors 27 unit capacitors 1 resistor (4Mohm) Configuration SRAM –Mask –Comparator trim (4 bits) 2 variants: subtle changes to capacitors Pixel Layouts preSample Pixel 4 diodes 189 transistors 34 unit capacitors Configuration SRAM –Mask –Comparator trim (4 bits) 2 variants: subtle changes to capacitors 10 Deep p-well Circuit N-Wells Diodes 10

8.2 million transistors pixels; 50 microns; 4 variants Sensitive area 79.4mm2 –of which 11.1% “dead” (logic) Test Chip Architecture Four columns of logic + SRAM –Logic columns serve 42 pixels –Record hit locations & timestamps –Local SRAM Data readout –Slow (<5Mhz) –Current sense amplifiers –Column multiplex –30 bit parallel data output 11

Sensor Testing: Overview Test pixels preSample pixel variant Analog output nodes Fe55 stimulus IR laser stimulus Single pixel in array Per pixel masks Fe55 stimulus Laser Stimulus Full pixel array preShape (quad0/1) Pedestals & trim adjustment Gain uniformity Crosstalk Beam test quad0 quad1 12

Charge collection Amplitude results With/without deep pwell Compare Simulations “GDS” Measurements “Real” (pixels with full electronics) F B Pixel profiles 13

55 Fe Source 55 Fe gives 5.9keV photon Deposits all energy in “point” in silicon; 1640e − Sometimes will deposit maximum energy in a single diode and no charge will diffuse  absolute calibration! Binary readout from pixel array Need to differentiate distribution to get signal peak in threshold units (TU) Differential approximation 14

15 CMOS Active Pixel Sensors are mature for high-end applications Cost-effective solution for large-scale experiments Low noise (< 10 e- rms) Large area: up to 200mm wafer-scale INMAPS process allows complex in-pixel architectures without degrading the detection performance Evaluating possibility of offering access to the INMAPS process to the community Conclusions

Acknowledgements For the Large Area Sensor (work carried out under the MI-3 Multidimensional Integrated Intelligent Imaging Consortium) A.T. Clark, N. Guerrini, J.P. Crooks, T. Pickering (Rutherford Appleton Laboratory) N. Allinson (University of Sheffield) S.E. Bohndiek (University College London) For the CALICE-MAPS: J.P. Crooks, R. Coath, M. Stanitzki, K.D. Stefanov, M. Tyndel, E.G. Villani (Rutherford Appleton Laboratory) J.A. Ballin, P.D.Dauncey, A.-M. Magnan, M. Noy (Imperial College London) Y. Mikami, N.K. Watson, O. Miller, V. Rajovic, J.A. Wilson (University of Birmingham) 16