Presentation is loading. Please wait.

Presentation is loading. Please wait.

Automata. ‘0101010’

Similar presentations


Presentation on theme: "Automata. ‘0101010’"— Presentation transcript:

1 Automata

2

3 ‘0101010’

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 01111?

22 1100?

23 11010?

24 000?

25 00110?

26 AcceptNot Accept 010101001111 1100000 1101000110

27 AcceptNot Accept 0101010010101001111 1100000 1101000110

28 Accept 되는 가장 짧은 String?

29 ‘’

30 ε

31 (Q, Σ, δ, q 0, A)

32

33 a finite set of states.

34 (Q, Σ, δ, q 0, A) a finite set of states.

35 (Q, Σ, δ, q 0, A) a finite set of states. {s 1, s 2 }

36 (Q, Σ, δ, q 0, A)

37 a finite set of symbols

38 (Q, Σ, δ, q 0, A) a finite set of symbols : alphabet

39 (Q, Σ, δ, q 0, A) a finite set of symbols : alphabet

40 (Q, Σ, δ, q 0, A) a finite set of symbols : alphabet {0, 1}

41 (Q, Σ, δ, q 0, A)

42 the transition function

43 (Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q

44 (Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q

45 (Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q { ((s 1, 0), s 2 ), ((s 1, 1), s 1 ), ((s 2, 0), s 1 ), ((s 2, 1), s 2 ) }

46 (Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q 01 s1s1 s2s2 s1s1 s2s2 s1s1 s2s2

47 (Q, Σ, δ, q 0, A)

48 the start state

49 (Q, Σ, δ, q 0, A) the start state

50 (Q, Σ, δ, q 0, A) the start state s1s1

51 (Q, Σ, δ, q 0, A)

52 accept states

53 (Q, Σ, δ, q 0, A) accept states

54 (Q, Σ, δ, q 0, A) accept states {s 1 }

55 (Q, Σ, δ, q 0, A) : {s 1, s 2 } : {0, 1} : {((s 1, 0), s 2 ), ((s 1, 1), s 1 ), ((s 2, 0), s 1 ), ((s 2, 1), s 2 ) } : s 1 : {s 1 } QΣδq0AQΣδq0A

56

57 (Q, Σ, δ, q 0, A) QΣδq0AQΣδq0A

58 : {1, 2, 3, 4, 0} : {a, b, c} : { ((1, a), 2), ((1, b), 0), ((1, c), 0), ((2, a), 0), ((2, b), 3), ((2, c), 0), ((3, a), 0), ((3, b), 0), ((3, c), 4), ((4, a), 2), ((4, b), 0), ((4, c), 4) } : 1 : {4} QΣδq0AQΣδq0A ?

59 (Q, Σ, δ, q 0, A) : {1, 2, 3, 4, 0} : {a, b, c} : { ((1, a), 2), ((1, b), 0), ((1, c), 0), ((2, a), 0), ((2, b), 3), ((2, c), 0), ((3, a), 0), ((3, b), 0), ((3, c), 4), ((4, a), 2), ((4, b), 0), ((4, c), 4), ((0, a), 0), ((0, b), 0), ((0, c), 0) } : 1 : {4} QΣδq0AQΣδq0A

60 (Q, Σ, δ, q 0, A) : {1, 2, 3, 4, 0} : {a, b, c} : : 1 : {4} QΣδq0AQΣδq0A abc 1200 2030 3004 4204 0000

61 (Q, Σ, δ, q 0, A) : {1, 2, 3, 4, 0} : {a, b, c} : : 1 : {4} QΣδq0AQΣδq0A abc 12 23 34 424

62 Dead state

63

64

65 (Q, Σ, δ, q 0, A) : {q 0, q 1, q 2, q 3, q 4 } : {0, 1} : { ((q 0, 0), q 0 ), ((q 0, 1), q 0 ), ((q 0, 0), q 3 ), ((q 0, 1), q 1 ), ((q 3, 0), q 4 ), ((q 1, 1), q 2 ), ((q 4, 0), q 4 ), ((q 4, 1), q 4 ), ((q 2, 0), q 2 ), ((q 2, 1), q 2 ) } : q 0 : {q 2, q 4 } QΣδq0AQΣδq0A

66 (Q, Σ, δ, q 0, A) : {q 0, q 1, q 2, q 3, q 4 } : {0, 1} : : q 0 : {q 2, q 4 } QΣδq0AQΣδq0A 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q4q4 q4q4 q4q4 q4q4

67 (Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q

68

69

70 Q × Σ : { (q 0, 0), (q 0, 1), (q 1, 0), (q 1, 1), (q 2, 0), (q 2, 1), (q 3, 0), (q 3, 1), (q 4, 0), (q 4, 1) } δ : { ((q 0, 0), q 0 ), ((q 0, 1), q 0 ), ((q 0, 0), q 3 ), ((q 0, 1), q 1 ), ((q 3, 0), q 4 ), ((q 1, 1), q 2 ), ((q 4, 0), q 4 ), ((q 4, 1), q 4 ), ((q 2, 0), q 2 ), ((q 2, 1), q 2 ) }

71 q0 q3 0 0 둘 다 가능 ! 두 개의 경로로 다 해본다. 하나라도 accept 되면 accept.

72 ‘011’ : q0 → q3 Not Accept

73 ‘011’ : q0 → q0 → q1 → q2

74 ‘001’ : q0 → q0 → q0 → q3 Not Accept

75 ‘001’ : q0 → q3 → q4 → q4

76 ‘001’ : q0 → q3 → q4 → q4 ‘011’ : q0 → q0 → q1 → q2

77 ‘001’ : q0 → q3 → q4 → q4 ‘011’ : q0 → q0 → q1 → q2

78 ‘001’ : q0 → q3 → q4 → q4 ‘011’ : q0 → q0 → q1 → q2 Nondeterministic

79 Nondeterministic Finite Automata

80 No Input

81 NFA

82 DFA

83 Deterministic Finite Automata

84 NFA ⊃ DFA

85 NFA ⇒ DFA

86 Nondeterministic Finite Automata

87 ⇒ Deterministic Finite Automata

88 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q4q4 q4q4 q4q4 q4q4

89 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q4q4 q4q4 q4q4 q4q4

90 0 1 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2

91 0 1 01 q0q0 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2

92 01 q0q0 q 0, q 3 q0, q1q0, q1 01 q0q0 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

93 01 q0q0 q 0, q 3 q0, q1q0, q1 q0, q1q0, q1 01 q0q0 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

94 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

95 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

96 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

97 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

98 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

99 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

100 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

101 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

102 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1

103 0 1 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2

104 0 1 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2

105 0 1 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2

106 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2

107 01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 1, q 2 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } {q 0, q 2, q 3 }{q 0, q 1, q 2 }

108 1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 1, q 2 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } {q 0, q 2, q 3 }{q 0, q 1, q 2 }

109 1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 1, q 2 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } {q 0, q 2, q 3 }{q 0, q 1, q 2 }

110 01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 } 1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 0 1 {q 0, q 2, q 3 }

111 0 1 1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 0 1 {q 0, q 2, q 3 } NFA DFA

112

113

114 abc

115 abccccccccccc

116 abcccccccccccabc

117 abcc...cabcc...cabccc...cc

118 (abc + ) +

119 Regular Expression

120 |, (), *, +, ε

121

122 OR

123 |, (), *, +, ε OR gray|grey -> {‘gray’, ‘grey’}

124 |, (), *, +, ε

125 scope

126 |, (), *, +, ε scope gray|grey = gr(a|e)y

127 |, (), *, +, ε

128 zero or more of the preceding element

129 |, (), *, +, ε zero or more of the preceding element ab*c →

130 |, (), *, +, ε zero or more of the preceding element ab*c → {"ac", "abc", "abbc", "abbbc", …}

131 |, (), *, +, ε

132 one or more of the preceding element

133 |, (), *, +, ε one or more of the preceding element ab + c →

134 |, (), *, +, ε one or more of the preceding element ab + c → {"abc", "abbc", "abbbc", …}, but not "ac”

135 |, (), *, +, ε one or more of the preceding element ab + c = abb*c

136 |, (), *, +, ε one or more of the preceding element ab + c = abb*c = ab*bc

137 |, (), *, +, ε

138 empty string

139 |, (), *, +, ε empty string : “”

140 |, (), *, +, ε empty string : “” a(b|ε)c →

141 |, (), *, +, ε empty string : “” a(b|ε)c → {"abc", "ac"}

142

143

144 abc +

145

146 (abc + ) +

147

148

149 ((0|1)*00(0|1)*) | ((0|1)*11(0|1)*)

150

151

152 (0|1)* (00|11) (0|1)*

153

154 ( 1 | 01*0 )*

155 {01, 0011, 000111, 00001111,…}

156 0n1n0n1n

157 Is it Regular?? 0n1n0n1n

158 0 1 {01}

159 0 1 0 1 1 {01, 0011}

160 0 1 0 1 1 0 1 1 {01, 0011, 000111}

161 0 1 0 1 1 0 1 1 0 1 1 {01, 0011, 000111, 00001111}

162 {01, 0011, 000111, 00001111, …} 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

163 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 cannot be FINITE automata 0n1n0n1n

164 NOT regular 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0n1n0n1n

165 Pumping Lemma

166 concept

167 Finite Automata Infinite Sentence &

168 0 1 0 1 1 ={01, 0011} L(01|0011)

169 1 ={01, 011, 0111, 01111, …} 0 L(01*)

170 1 ={01, 011, 0111, 01111, …} 0 L(01*)

171 1 0 ={0, 10, 00, 110, 0100, …} L( (0|1)*0 ) 1 0

172 L( a(bc)*d ) ={ad, abcd, abcbcd, …}

173 Pumping Lemma

174 ∀ : for all ∃ : exist

175 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p If L is regular

176 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p a(bc)*d If L is regular

177 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p a(bc)*d If L is regular

178 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 a(bc)*d If L is regular

179 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 a(bc)*d If L is regular

180 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d If L is regular

181 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w = {abcd, abcbcd, …} a(bc)*d If L is regular

182 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w = {abcd, abcbcd, …} a(bc)*d If L is regular

183 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular

184 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular

185 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d | y | = 2 If L is regular

186 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular

187 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d xy = abc | xy |=3 If L is regular

188 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular

189 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d xy i z = a(bc)*d If L is regular

190 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w = {abcd, abcbcd, …} a(bc)*d If L is regular

191 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular

192 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular

193 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd | y | = 2 If L is regular

194 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular

195 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd xy = abc | xy |=3 If L is regular

196 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular

197 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd xy i z = a(bc) + d If L is regular

198 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular

199 Pumping Lemma Why?

200 Pumping Lemma to prove not regular

201 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p If L is regular

202 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p If L is regular

203 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p L is not regular if

204 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p L is not regular if

205 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

206 w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

207 ∀ x, y, z w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

208 ∀ x, y, z w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

209 ∀ x, y, z w = xyz | y | = 0 or | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

210 ∀ x, y, z w = xyz | y | = 0 or | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

211 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

212 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

213 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

214 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

215 Pumping Lemma to prove not regular

216 0n1n0n1n

217 0n1n0n1n ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

218 0n1n0n1n ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if

219 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n

220 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n

221 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p

222 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p

223 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ)ⅱ)ⅰ)ⅱ)

224 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = ε z = 0 p-m-n 1 p ⅱ )

225 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = ε z = 0 p-m-n 1 p ⅱ )

226 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ )

227 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ )

228 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ )

229 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ ) i =0, xy i z =

230 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ ) i =0, xy i z = 0 p-n 1 p

231 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ ) i =0, xy i z = 0 p-n 1 p ∈ L (0 n 1 n )

232 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) ⅱ ) x = 0 p y = 1 n (n>0) z = 1 p-n

233 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) ⅱ ) ?

234 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = 0 n (n>0) z = 0 p-m-n 1 n

235 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = 0 n (n>0) z = 0 p-m-n 1 n ⅱ ) other wise | y | = 0 or | xy | > p

236 (01) n 1 n

237 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p (01) n 1 n let w =(01) p 1 p ⅰ ) x = (01) m y = (01) n (n>0) z = (01) p-m-n 1 p ⅱ ) i =0, xy i z = (01) p-n 1 p

238 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p (01) n 1 n let w =(01) p 1 p ⅰ ) ⅱ ) x = (01) m y = (01) n 0 (n>0) z = 1(01) p-m-n-1 1 p i =0, xy i z = (01) p-n 1 p

239 ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p (01) n 1 n let w =(01) p 1 p ⅰ)ⅱ)ⅲ)ⅳ)ⅰ)ⅱ)ⅲ)ⅳ) i =0, xy i z = (01) p-n 1 p

240 ? regular

241 Context Free regular

242 Context Free Grammar

243 S → 0S1 S → ε

244 S → 0S1 S → ε L(S) = 0 n 1 n

245 S → 0S1 | ε L(S) = 0 n 1 n

246 S → S + S S → S - S S → S * S S → S / S S → ( S )

247 S → x | y | z S → S + S S → S - S S → S * S S → S / S S → ( S )

248 S → A S → S + S S → S - S S → S * S S → S / S S → ( S ) A → 0|1|2|3|4|5|6|7|8|9

249 S → A S → S + S S → S - S S → S * S S → S / S S → ( S ) A → 0|1|2|3|4|5|6|7|8|9|AA

250 S → B S → S + S S → S - S S → S * S S → S / S S → ( S ) A → 0|1|2|3|4|5|6|7|8|9|AA|ε B → 0 | (1|2|3|4|5|6|7|8|9)A

251

252 S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

253 (V, Σ, R, S)

254

255 a finite set of non-terminal characters

256 (V, Σ, R, S) a finite set of variables

257 (V, Σ, R, S) S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice a finite set of variables

258 (V, Σ, R, S) a finite set of variables {S, NP, VP, N, V, A} S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

259 (V, Σ, R, S)

260 a finite set of terminals

261 (V, Σ, R, S) a finite set of terminals S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

262 (V, Σ, R, S) a finite set of terminals {dogs, cats, like, nice} S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

263 (V, Σ, R, S)

264 a finite relation from V to (V ∪ Σ)*

265 (V, Σ, R, S) a finite rewrite rules(productions)

266 (V, Σ, R, S) a finite rewrite rules(productions) S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

267 (V, Σ, R, S) a finite rewrite rules(productions) S → NP VP NP → A N | N … A � → nice S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

268 (V, Σ, R, S)

269 a start variable

270 (V, Σ, R, S) a start variable S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

271 (V, Σ, R, S) a start variable S S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice

272 PDA

273 Push Down Automata

274 Pushdown Automata

275

276

277 State

278

279 Input Character

280 State

281 Input Character State Change in Stack

282 Input Character State Change in Stack

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336 (Q, Σ, Γ, δ, q 0, Z, F)

337

338 a finite set of states

339 (Q, Σ, Γ, δ, q 0, Z, F) a finite set of states

340 (Q, Σ, Γ, δ, q 0, Z, F) a finite set of states {p, q, r}

341 (Q, Σ, Γ, δ, q 0, Z, F)

342 a finite set of input character

343 (Q, Σ, Γ, δ, q 0, Z, F) input alphabet

344 (Q, Σ, Γ, δ, q 0, Z, F) input alphabet

345 (Q, Σ, Γ, δ, q 0, Z, F) {0, 1} input alphabet

346 (Q, Σ, Γ, δ, q 0, Z, F)

347 a finite set of stack character

348 (Q, Σ, Γ, δ, q 0, Z, F) stack alphabet

349 (Q, Σ, Γ, δ, q 0, Z, F) stack alphabet

350 (Q, Σ, Γ, δ, q 0, Z, F) stack alphabet {A, Z}

351 (Q, Σ, Γ, δ, q 0, Z, F)

352 Transition relation: Q x (Σ ∪ {ε}) x Г →Г*

353 (Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г*

354 (Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA))

355 (Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA)) ((p,ε,A), (q,A)) ((p,ε,Z), (q,Z))

356 (Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA)) ((p,ε,A), (q,A)) ((p,ε,Z), (q,Z)) ((q,1,A), (q,ε))

357 (Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA)) ((p,ε,A), (q,A)) ((p,ε,Z), (q,Z)) ((q,1,A), (q,ε)) ((q,ε,Z), (r,Z))

358 (Q, Σ, Γ, δ, q 0, Z, F)

359 start state

360 (Q, Σ, Γ, δ, q 0, Z, F) start state

361 (Q, Σ, Γ, δ, q 0, Z, F) start state p

362 (Q, Σ, Γ, δ, q 0, Z, F)

363 initial stack symbol

364 (Q, Σ, Γ, δ, q 0, Z, F) initial stack symbol

365 (Q, Σ, Γ, δ, q 0, Z, F) initial stack symbol Z

366 (Q, Σ, Γ, δ, q 0, Z, F)

367 accepting states

368 (Q, Σ, Γ, δ, q 0, Z, F) accepting states

369 (Q, Σ, Γ, δ, q 0, Z, F) accepting states {r}

370 0n1n0n1n

371 000….0111….1

372 Z

373 Z

374 A:AAZA:AAZ Z

375 A:AAZA:AAZ

376 A:AAZA:AAZ Z

377 0n1n2n0n1n2n

378 000…0111…1222…2

379 Z

380 Z

381 A:AAZA:AAZ Z

382 A:AAZA:AAZ

383 Z A:AAZA:AAZ

384 Z

385 Z

386 Z

387 Z Z

388 Z Z

389 A:AAZA:AAZ Z Z Z

390 A:AAZA:AAZ Z

391 Z A:AAZA:AAZ Z

392 Z B:BBZB:BBZ A:AAZA:AAZ Z

393 Z B:BBZB:BBZ

394 Z Z Z B:BBZB:BBZ

395 Z Z

396 0n1n2n0n1n2n

397 Turing Machine

398 000111222

399 bbbbbbbbb000111222bbbbbbbbb

400 bbbbbbbbq 0 000111222bbbbbbbb

401 q 0 000111222

402 0q 1 00111222

403 00q 1 0111222

404 000q 1 111222

405 0001q 1 11222

406 00011q 1 1222

407 000111q 1 222

408 000111q 2 222

409 00011q 3 3222

410 0001q 3 13222

411 000q 3 113222

412 00q 3 0113222

413 0q 3 00113222

414 q 3 000113222

415 q 4 000113222

416 bq 1 00113222

417 b0q 1 0113222

418 b00q 1 113222

419 b001q 1 13222

420 b0011q 1 3222

421 b0011q 2 3222

422 b001q 3 33222

423 b00q 3 133222

424 b0q 3 0133222

425 bq 3 00133222

426 bq 4 00133222

427 bbq 1 0133222

428 bb0q 1 133222

429 bb01q 1 33222

430 bb01q 2 33222

431 bb0q 3 333222

432 bbq 3 0333222

433 bbq 4 0333222

434 bbbq 1 333222

435 bbbq 2 333222

436 bbbq 5 333222

437 bbb333222q 5

438 bbb333222q 6

439 bbb33322q 7 b

440 bbbq 8 33322b

441 bbbbq 7 3322b

442 bbbb3322q 7 b

443 bbbbq 8 332bb

444 bbbbb32q 7 bb

445 bbbbbq 8 3bb

446 bbbbbbq 7 bb

447 bbbbbbq 8 bb


Download ppt "Automata. ‘0101010’"

Similar presentations


Ads by Google