Presentation is loading. Please wait.

Presentation is loading. Please wait.

Radiation study of the TPC electronics Georgios Tsiledakis, GSI.

Similar presentations


Presentation on theme: "Radiation study of the TPC electronics Georgios Tsiledakis, GSI."— Presentation transcript:

1 Radiation study of the TPC electronics Georgios Tsiledakis, GSI

2 Topics Radiation transport code (FLUKA) Geometry description Definition of the suitable scoring region Calculation of the number of the particles and their energy distributions defining the left end- plate of the TPC made of 1cm and 10cm Al respectively Estimation of the particle fluences Summary

3 Simulation code (FLUKA) Hadron-hadron and hadron-nucleus elastic and inelastic interactions 0-20 TeV Electromagnetic and muon interactions 0-100 TeV (pair production and bremsstrahlung, multiple coulomb scattering and magnetic field transport, delta ray production) Particle transport: all stable hadrons, electrons, positrons, muons, photons Neutron multigroup transport and interactions 0-20 MeV Neutron capture reactions with explicit photon emission Accurate and detailed ionization energy loss Efficient model for multiple scattering for all charged particles For this study, the transport cut for charged hadrons is set to 10 keV. The energy thresholds for electrons and photons that are used in central detectors are 50 keV and 30 keV respectively.

4 Geometry description FLUKA uses the Combinatorial Geometry. About 3200 volumes and 1500 regions are needed to describe the full ALICE experimental area, including the cavern, tunnels, vertical shafts, rooms, shielding, inner triplet and separation dipoles, the surrounding hall, beam elements, detectors and racks. Particle backscattering from concrete walls of caverns and shafts is taken into account by approximating the walls by a 30 cm layer of concrete. Regions behind this layer are treated as black-holes.

5 TPC gas volume: 79.25<r<278 cm and |z|<275 cm TPC gas: (90% Ne + 10% CO 2 ) Wgt tot =0.9M Ne +0.1*(M C +2M O ) There is a correspondence between FLUKA materials and low-energy neutron cross-sections. FLUKA low-energy neutron library doesn’t include Neon. Therefore, Fluorine has been chosen instead.

6 TPC gas TPC gas Al Air 278.17 227.2 177.2 127.2 77.2 -77.2 -127.2 -177.2 -227.2 -278.17 -296 -285 -275 4 radial segments of 1cm width for scoring (-297<z<-296) 12341234 43214321  10cm of Al (-285<z<-275) or  1cm of Al (-276<z<-275) Scoring region [cm]

7 4 scored layers of air layersVolume (cm 3 )Area (cm 2 ) 132107 247815 363523 480923

8 [cm] 1 FLUKA event: 80000 pions and kaons (HIJING) are propagated in the ALICE geometry at |eta|<5 In this study 5 fluka runs have taken place for 16000 primaries each run and after merging we had one central event in total, with 1cm and 10cm of Al respectively. Scoring region Estimation of particle numbers The radiation is strongly correlated to the total number of produced particles. Use of a “current” estimator for counting particles from a boundary crossing scoring on each of the 4 layers apart that form the scoring region.

9 Energy spectra 1cm Al Thermal neutrons ~0.025 eV

10 Energy spectra 1cm Al 10cm Al 98.5 % p 99.9 %  +/-,  +/- E>10MeV 99 %  +/- 4.1 % n 72 % e+/- with E>0.5 MeV 98.7 % p 99.9 %  +/-,  +/- E>10MeV 98.5 %  +/- 6.5 % n 93.9 % e+/- with E>0.5 MeV

11 Number of particles per central event layers 1234 sum 1234 protons 302238201164905355219136105815 electrons 68202528108410261145842412382163515249782 positrons 16827064352853108273113007996395469 photons 73057670914929828252217698660961062064537041727259399 neutrons 1746428906397064757413365018180261063181237149113247 muons+/- 44240243630515852812432352571016 pions+/- 223016381472113364731871119110458354942 kaons+/- 1851028360430164796248353 primaries 101174452499122610175254133 charged 1166356153713297423965964454153913340922381 1cm Al 10cm Al Multiply with 4*10 10 to get the number of particles traversing a layer in 10 ALICE years of Pb+Pb. [(8000 Hz)*(10 years)*(2.5 *10 6 sec/year)/(5 :to get from central to min bias multiplicity)]

12 layers 1234 sum protons 1.21E+139.52E+128.04E+126.56E+123.62E+13 electrons 2.73E+141.01E+144.34E+134.10E+134.58E+14 positrons 6.73E+132.82E+131.74E+131.14E+131.24E+14 photons 2.92E+152.68E+151.97E+151.13E+158.71E+15 neutrons 6.99E+141.16E+151.59E+151.90E+155.35E+15 muons+/- 1.77E+131.61E+131.74E+131.22E+136.34E+13 pions+/- 8.92E+136.55E+135.89E+134.53E+132.59E+14 kaons+/- 7.40E+124.08E+123.32E+122.40E+121.72E+13 primaries 4.04E+126.96E+121.81E+132.00E+134.90E+13 charged 4.67E+142.25E+141.49E+141.19E+149.59E+14 Number of particles per 10 ALICE years 1cm Al

13 Number of particles per 10 ALICE years 1cm Al

14 layers 1234 sum protons 1.42E+138.76E+125.44E+124.20E+123.26E+13 electrons 1.70E+149.53E+136.54E+136.10E+133.91E+14 positrons 1.09E+145.20E+133.20E+132.56E+132.19E+14 photons 2.64E+154.25E+151.81E+151.67E+151.04E+16 neutrons 7.27E+141.04E+151.27E+151.49E+154.53E+15 muons+/- 1.12E+139.72E+129.40E+121.03E+134.06E+13 pions+/- 7.48E+134.76E+134.18E+133.34E+131.98E+14 kaons+/- 6.56E+123.16E+122.48E+121.92E+121.41E+13 primaries 4.00E+116.80E+112.08E+122.16E+125.32E+12 charged 3.86E+142.17E+141.57E+141.36E+148.95E+14 Number of particles per 10 ALICE years 10cm Al

15 Number of particles per 10 ALICE years 10cm Al

16 Zv (cm) Counts 1cm Al 10cm Al Z distribution of protons origin in the scoring region Most of the primary protons are stopped in the 10cm Al end-plate and a significant slow proton production start

17 Particle fluxes and fluences "Flux" counts the rate of arrivals per unit area indepedent of particle direction and its real physical meaning is that of path density, whereas "current" counts the rate crossing through a given plane, referred to area elements in the surface of the plane. In FLUKA, flux is defined as the track-length of a particle per unit of volume and its unit can be expressed as (cm -2 s -1 ) and fluence is the time integral of flux expressed in units of (cm -2 ). The results of the FLUKA tracklength estimator are always given as differential distributions of fluence in energy (cm -2 GeV –1 ) per primary. The following plots are designed to allow visual integration of fluence having the areas under the curves proportional to the fluence (lethargy spectrums).

18 1 cm Aluminum Energy (GeV) dΦ/dE * E Particles/cm 2 /primary layer 1 Cumul. Fluence (Particles/cm 2 /primary) per central event total:1.134e-05 +/- 2 % thermal:1.687e-06

19 layer 1 layer 3 dΦ/dE * E Energy (GeV) 1 cm Aluminum layer 1 Cumul. Fluence (Particles/cm 2 /primary) per central event total:8.91E-06 +/- 45 % layer 3 Cumul. Fluence (Particles/cm 2 /primary) per central event total:1.22E-06 +/- 7 % Particles/cm 2 /primary

20 layer 1 Energy (GeV) dΦ/dE * E layer 1 dΦ/dE * E Energy (GeV) 1cm Al10cm Al Particles/cm 2 /primary 1.66E-7 +/- 6 %1.87E-7 +/- 9 % Cumul. Fluence (Particles/cm 2 /primary) per central event

21 Cumul. Fluences (Particles/cm 2 /primary) per central event layers 1234 protons 1.66E-7 +/- 6 %9.36E-8 +/- 8 %7.05E-8 +/- 6 %4.21E-8 +/- 7 % electrons/positrons 7.33E-6 +/- 56 %1.13E-6 +/- 24 %5.4E-7 +/- 16 %3.42E-7 +/- 38 % neutrons 1.13E-5 +/- 2 %1.17E-5 +/- 1%1.18E-5 +/- 0.5 %1.16E-5 +/- 1 % thermal neutrons 1.69E-6 1.75E-61.67E-6 muons+/- 3.17E-7 +/- 8 %1.94E-7 +/- 6 %1.79E-7 +/- 7 %9.33E-8 +/- 4 % pions+/- 1.02E-6 +/- 1 %5.69E-7 +/- 3 %4.1E-7 +/- 4%2.67E-7 +/- 4 % kaons+/- 7.66E-8 +/- 4 %3E-8 +/- 8 %2E-8 +/- 6 %1.26E-8 +/- 7 % charged 8.91E-6 +/- 46 %2.01E-6 +/- 13 %1.22E-6 +/- 7 %7.57E-7 +/- 17 % 1cm Al Multiply with 3.2*10 15 to get the cumulative fluences for each layer in 10 ALICE years of Pb+Pb. [(80000 primaries) *(4*10 10 )=3.2*10 15 ]

22 Cumul. Fluences (Particles/cm 2 /primary) per central event layers 1234 protons 1.87E-7 +/- 9 %9.E-8 +/- 2 %4.12E-8 +/- 8 %2.49E-8 +/- 10 % electrons/positrons 3.76E-6 +/- 9 %1.35E-6 +/- 7 %7.41E-7 +/- 12 %5.46E-7 +/- 7.5 % neutrons 1.05E-5 +/- 1 %9.83E-6 +/- 0.5%9.83E-6 +/- 1 %9.49E-6 +/- 1.5 % thermal neutrons 1.21E-61.04E-61.11E-61.25E-6 muons+/- 1.78E-7 +/- 5 %1.01E-7 +/- 8 %6.67E-8 +/- 4 %7.88E-8 +/- 19.5 % pions+/- 8.55E-7 +/- 2 %3.92E-7 +/- 2 %2.83E-7 +/- 4%1.97E-7 +/- 6 % kaons+/- 6.81E-8 +/- 12 %2.48E-8 +/- 15 %1.47E-8 +/- 15 %9.66E-9 +/- 15 % charged 5.05E-6 +/- 6 %1.96E-6 +/- 5 %1.15E-6 +/- 8 %8.57E-7 +/- 4 % 10cm Al Multiply with 3.2*10 15 to get the cumulative fluences for each layer in 10 ALICE years of Pb+Pb. [(80000 primaries) *(4*10 10 )=3.2*10 15 ]

23 Cumul. Fluences (Particles/cm 2 ) per 10 ALICE years layers 1234 protons 5.31E+08 +/- 6 %3.00E+08 +/- 8 %2.26E+08 +/- 6 %1.35E+08 +/- 7 % electrons/positrons 2.35E+10 +/- 56 %3.62E+09 +/- 24 %1.73E+09 +/- 16 %1.09E+09 +/- 38 % neutrons 3.62E+10 +/- 2 %3.74E+10 +/- 1 %3.78E+10 +/- 0.5 %3.71E+10 +/- 1 % thermal neutrons 5.41E+09 5.60E+095.34E+09 muons+/- 1.01E+09 +/- 8 %6.21E+08 +/- 6 %5.73E+08 +/- 7 %2.99E+08 +/- 4 % pions+/- 3.26E+09 +/- 1 %1.82E+09 +/- 3 %1.31E+09 +/- 4 %8.54E+08 +/- 4 % kaons+/- 2.45E+08 +/ -4 %9.60E+07 +/- 8 %6.40E+07 +/- 6 %4.03E+07 +/- 7 % charged 2.85E+10 +/- 46 %6.43E+09 +/- 13 %3.90E+09 +/- 7 %2.42E+09 +/- 17 % 1cm Al

24 Cumul. Fluences (Particles/cm 2 ) per 10 ALICE years1cm Al

25 layers 1234 protons 5.98E+08 +/- 9 %2.88E+08 +/- 2 %1.32E+08 +/- 8 %7.97E+07 +/- 10 % electrons/positrons 1.20E+10 +/- 9 %4.32E+09 +/- 7 %2.37E+09 +/- 12 %1.75E+09 +/- 7.5 % neutrons 3.36E+10 +/- 1 %3.15E+10 +/- 0.5 %3.15E+10 +/- 1 %3.04E+10 +/- 1.5 % thermal neutrons 3.87E+093.33E+093.55E+094.00E+09 muons+/- 5.70E+08 +/- 5 %3.23E+08 +/- 8 %2.13E+08 +/- 4 %2.52E+08 +/- 19.5 % pions+/- 2.74E+09 +/- 2 %1.25E+09 +/- 2 %9.06E+08 +/- 4 %6.30E+08 +/- 6 % kaons+/- 2.18E+08 +/- 12 %7.94E+07 +/- 15 %4.70E+07 +/- 15 %3.09E+07 +/- 15 % charged 1.62E+10 +/- 6 %6.27E+09 +/- 5 %3.68E+09 +/- 8 %2.74E+09 +/- 4 % 10cm Al Cumul. Fluences (Particles/cm 2 ) per 10 ALICE years

26 10cm Al

27 Layer 1cm Al 1234 Total Edep (MeV) 55.7 +/- 45.620.64 +/- 3.919.44 +/- 1.7614.72 +/- 4.8 Edep from e+/-,   MeV) 39.7 +/- 34.48.65 +/- 2.96.16+/-1.922.6 +/- 1 Layer 10cm Al 1234 Total Edep (MeV)33.8 +/- 7.320.96 +/- 2.415.76 +/- 4.815.6 +/- 4 Edep from e+/-,   MeV) 19.68 +/- 4.211.84 +/- 2.18.85 +/- 45.91 +/- 2.9 Total and EM energy deposition in these 1cm thick layers of air per one central event To obtain doses (in Gy) these results must be multiplied by (10 9 *e/rho), where rho is the material density in g/cm 3 and e the electron charge in Cb (rho air =1.2E-3)

28 Summary The cumulative fluence of neutrons as well as of charged particles is expected to be of the order of 10 10 particles/cm 2 per 10 ALICE years The results of this simulation concerning the particle rates, fluences and energy distributions should be taken into account for checking the radiation tolerance of the electronics

29 FLUKA calculation of the slow proton production in the TPC with the standard gas and after the addition of 5% Methane

30 Calculation of the slow proton production in the TPC Use of a “current” estimator for counting particles. Take into account only the first “hit” position in the TPC. Include all the “unique” protons that are crossing or are created in the TPC region. Log10(Age) (sec)Log10(Ekin) (GeV) TPC gas with 5% CH 4 TPC gas Proton time spectra Proton energy spectra Counts TPC gas volume: 79.25<r<278 cm and |z|<275 cm TPC gas: (90% Ne + 10% CO 2 ) Wgt tot =0.9M Ne +0.1*(M C +2M O ) New TPC gas: (85% Ne + 10% CO 2 + 5% CH 4 ) Radial distribution of protons origin in the TPC Rv (cm) Counts

31 Conclusions  Prompt neutrons can scatter on H (due to the presence of 5% CH 4 in the TPC gas) and produce a knockout proton background.  Each slow proton deposit on average ~ 1.1 MeV having ~2 cm tracklength  The additional energy deposition in the TPC due to them should be less than ~3.5%  Slow protons/mip~270 # protons/central event # protons created in the gas/central event No CH 4 3’208120 5% CH 4 4’3641’415


Download ppt "Radiation study of the TPC electronics Georgios Tsiledakis, GSI."

Similar presentations


Ads by Google