Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction EIPBN 2015, San Diego

Similar presentations


Presentation on theme: "Introduction EIPBN 2015, San Diego"— Presentation transcript:

0 Demonstration of 22-nm half-pitch resolution at the SHARP microscope
Semiconductor High-NA actinic Reticle Review Project Markus Benk, Ken Goldberg, Antoine Wojdyla, Chris Anderson, Mike Kocsis, Patrick Naulleau EIPBN 2015, San Diego, May 28

1 Introduction EIPBN 2015, San Diego Yan, Proc. of SPIE 9422, 94220J (2015) Mangat, PMJ 2015 (in press) Raghunathan, J. Vac. Sci. Technol. B 32(6) (2014) Lawliss, Proc. of SPIE (2014)

2 Optics: Zoneplate lenses 4×NA: 0.25–0.625 Sigma: Programmable
Overview EIPBN 2015, San Diego Source: Synchrotron Optics: Zoneplate lenses 4×NA: –0.625 Sigma: Programmable Navigation: Full-mask XY

3 Layout CCD ILLUMINATOR LENS PHOTOMASK Not to scale SHARP
EIPBN 2015, San Diego Layout CCD ILLUMINATOR LENS PHOTOMASK Not to scale

4 SHARP SRI2013 EIPBN 2015, San Diego 5

5 Pupil fill Annuluar s1=0.2 s2=0.8 0.5 4xNA 8° CRA
Fourier Synthesis Illuminator EIPBN 2015, San Diego Pupil fill Annuluar s1=0.2 s2=0.8 0.5 4xNA 8° CRA

6 Pupil fill Crosspole s1=0.4 s2=0.8 0.5 4xNA 8° CRA
Fourier Synthesis Illuminator EIPBN 2015, San Diego Pupil fill Crosspole s1=0.4 s2=0.8 0.5 4xNA 8° CRA

7 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO ASML Flex pupil 7 standard fills Liu, Proc. of SPIE Q (2014) Meiling, Proc. of SPIE 8322, 83221G (2012)

8 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Optimized source Liu, Proc. of SPIE Q (2014) Meiling, Proc. of SPIE 8322, 83221G (2012)

9 Pupil fill Pixelated Source 0.5 4xNA 8° CRA
Fourier Synthesis Illuminator EIPBN 2015, San Diego Pupil fill Pixelated Source 0.5 4xNA 8° CRA

10 Pupil fill Intensity Modulation Pixelated Source 0.5 4xNA 8° CRA
Fourier Synthesis Illuminator EIPBN 2015, San Diego Pupil fill Intensity Modulation Pixelated Source 0.5 4xNA 8° CRA

11 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a

12 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

13 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

14 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

15 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

16 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

17 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

18 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil channel a Image

19 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil

20 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil Image

21 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil Image

22 Source Optimization and SMO
Fourier Synthesis Illuminator EIPBN 2015, San Diego Source Optimization and SMO Pupil Image

23 2013 EUVL Symposium, Toyama, Japan
5 mm Gold pattern on Si-membranes Magnetic mounting Kinematic positioning 2 mm SHARP 2013 EUVL Symposium, Toyama, Japan Zoneplates Gold pattern on Si-membranes Magnetic mounting Kinematic positioning

24 Zoneplates Chip A Standard Zoneplates: 0.25 to 0.625 4xNA
SHARP EIPBN 2015, San Diego Zoneplates Chip A Standard Zoneplates: 0.25 to xNA 6° to 10° CRA 5 azimuthal angles 160 µm Chip B Zernike Phase Contrast Differential Interference Contrast Stereoscopic imaging Cubic Phase Modulation Chip C (coming soon) Vari-NA zoneplates Hybrid focus Hybrid DIC X/Y Hybrid bright- / dark field Programmed aberrations

25 SHARP off-axis zoneplate
EIPBN 2015, San Diego Zoneplates 0.33-NA scanner 4x demagnification mask-side NA SHARP NA zoneplate 6º central ray angle SHARP off-axis zoneplate

26 SHARP off-axis zoneplate
EIPBN 2015, San Diego Zoneplates 0.5-NA scanner 4x demagnification 0.125 mask-side NA SHARP 0.125 NA zoneplate 8º central ray angle SHARP off-axis zoneplate

27 SHARP off-axis zoneplate
EIPBN 2015, San Diego Zoneplates Potential higher-NA at 4x demagnification SHARP 0.156 NA zoneplate 10º central ray angle SHARP off-axis zoneplate

28 SHARP off-axis zoneplate
EIPBN 2015, San Diego Zoneplates Potential higher-NA at 4x demagnification SHARP 0.156 NA zoneplate 10º central ray angle 11º SHARP off-axis zoneplate

29 SHARP off-axis zoneplate
EIPBN 2015, San Diego Zoneplates 0.5-NA scanner 4x demagnification 0.125 mask-side NA SHARP 0.125 NA zoneplate 8º central ray angle 11º SHARP off-axis zoneplate

30 SHARP off-axis zoneplate
EIPBN 2015, San Diego Zoneplates 0.55-NA scanner with anamorphic optics 6º central ray angle 4x demagnification in x and 8x in y 0.138 mask-side NA in x and in y 11º SHARP off-axis zoneplate

31 Resolution Limits coherent Rayleigh dipole zoneplate 0.125 NA
Resolution Test Target EIPBN 2015, San Diego Resolution Limits Illumination coherent incoherent extreme dipole Resolution limit 0.5 4xNA 108 54 66 33 54 (pitch) 27 (half pitch) xNA 87 44 53 26 44 (pitch) 22 (half pitch) coherent Rayleigh dipole zoneplate 0.125 NA (0.5 NA scanner) 108 54 66 33 54 pitch 27 hp 0.156 NA (0.625 NA scanner) 87 44 53 26 44 pitch 22 hp

32 MET3 Photoresist Berkeley Microfield Exposure Tool 0.3 NA
Resolution Test Target EIPBN 2015, San Diego MET3 Photoresist Berkeley Microfield Exposure Tool 0.3 NA Inpria YA-Series Resist Negative-tone 50-nm absorption length 30-nm thick resist on Si-wafer coated with a standard Mo/Si-multilayer 30% EUV-transmission on double pass

33 SEM images 28-nm hp lines bright field 22-nm hp lines dark field
Resolution Test Target EIPBN 2015, San Diego SEM images 28-nm hp lines bright field 22-nm hp lines dark field

34 Coherent illumination
Results EIPBN 2015, San Diego 0.5 4xNA Coherent illumination 100-nm hp lines 2 µm

35 Coherent illumination rC=54 nm hp 100-nm hp lines 83% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Coherent illumination rC=54 nm hp 100-nm hp lines 83% modulation 300 nm CD

36 Coherent illumination rC=54 nm hp 60-nm hp lines 68% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Coherent illumination rC=54 nm hp 60-nm hp lines 68% modulation 300 nm CD

37 Coherent illumination rC=54 nm hp 50-nm hp lines No modulation
Results EIPBN 2015, San Diego 0.5 4xNA Coherent illumination rC=54 nm hp 50-nm hp lines No modulation 300 nm CD

38 Incoherent illumination rR=33 nm hp 50-nm hp lines 20% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Incoherent illumination rR=33 nm hp 50-nm hp lines 20% modulation 300 nm CD

39 Incoherent illumination rR=33 nm hp 36-nm hp lines 5% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Incoherent illumination rR=33 nm hp 36-nm hp lines 5% modulation 300 nm CD

40 Incoherent illumination rR=33 nm hp 34-nm hp lines 4% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Incoherent illumination rR=33 nm hp 34-nm hp lines 4% modulation 300 nm CD

41 0.5 4xNA Extreme dipole rD=27 nm hp 34-nm hp lines 27% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Extreme dipole rD=27 nm hp 34-nm hp lines 27% modulation 300 nm CD

42 0.5 4xNA Extreme dipole rD=27 nm hp 28-nm hp lines 14% modulation
Results EIPBN 2015, San Diego 0.5 4xNA Extreme dipole rD=27 nm hp 28-nm hp lines 14% modulation 300 nm CD

43 Coherent illumination rC=44 nm hp 100-nm hp lines 83% modulation
Results EIPBN 2015, San Diego xNA Coherent illumination rC=44 nm hp 100-nm hp lines 83% modulation 200 nm CD

44 Coherent illumination rC=44 nm hp 50-nm hp lines 56% modulation
Results EIPBN 2015, San Diego xNA Coherent illumination rC=44 nm hp 50-nm hp lines 56% modulation 200 nm CD

45 Coherent illumination rC=44 nm hp 40-nm hp lines No modulation
Results EIPBN 2015, San Diego xNA Coherent illumination rC=44 nm hp 40-nm hp lines No modulation 200 nm CD

46 Incoherent illumination rR=26 nm hp 40-nm hp lines 18% modulation
Results EIPBN 2015, San Diego xNA Incoherent illumination rR=26 nm hp 40-nm hp lines 18% modulation 200 nm CD

47 Incoherent illumination rR=26 nm hp 28-nm hp lines 3% modulation
Results EIPBN 2015, San Diego xNA Incoherent illumination rR=26 nm hp 28-nm hp lines 3% modulation 200 nm CD

48 Incoherent illumination rR=26 nm hp 26-nm hp lines 2% modulation
Results EIPBN 2015, San Diego xNA Incoherent illumination rR=26 nm hp 26-nm hp lines 2% modulation 200 nm CD

49 0.625 4xNA Extreme dipole rL=22 nm hp 26-nm hp lines 33% modulation
Results EIPBN 2015, San Diego xNA Extreme dipole rL=22 nm hp 26-nm hp lines 33% modulation 200 nm CD

50 0.625 4xNA Extreme dipole rL=22 nm hp 24-nm hp lines 25% modulation
Results EIPBN 2015, San Diego xNA Extreme dipole rL=22 nm hp 24-nm hp lines 25% modulation 200 nm CD

51 0.625 4xNA Extreme dipole rL=22 nm hp 22-nm hp lines 10% modulation
Results EIPBN 2015, San Diego xNA Extreme dipole rL=22 nm hp 22-nm hp lines 10% modulation 200 nm CD

52 Summary Semiconductor High-NA Actinic Reticle Review Project
EIPBN 2015, San Diego Summary Semiconductor High-NA Actinic Reticle Review Project Fourier Synthesis Illuminator produces arbitrary sources Emulation of anamorphic imaging 22-nm half-pitch resolution The project was funded by SEMATECH through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

53 EIPBN 2015, San Diego sharp.lbl.gov Thank you!


Download ppt "Introduction EIPBN 2015, San Diego"

Similar presentations


Ads by Google