Presentation is loading. Please wait.

Presentation is loading. Please wait.

AT/MTM, August 2004 Quench Test Results obtained with The Local Quench Antennas on selected magnets M. Calvi S. Kouzue A. Forrester E. Floch P. Pugnat.

Similar presentations


Presentation on theme: "AT/MTM, August 2004 Quench Test Results obtained with The Local Quench Antennas on selected magnets M. Calvi S. Kouzue A. Forrester E. Floch P. Pugnat."— Presentation transcript:

1 AT/MTM, August 2004 Quench Test Results obtained with The Local Quench Antennas on selected magnets M. Calvi S. Kouzue A. Forrester E. Floch P. Pugnat and A. Siemko

2 AT/MTM, August 2004 Outline New Local Quench Antennas (LQA) –Overall presentation –Principle, example of signals & interpretation Present Statistics & Trends –Overview of the results by company –Trends –Quench performance of specific cases studied Results of quench localisation with LQA in recent magnets: –2036, 2069, 2523 –(3061, 3063, 3122) Conclusions

3 AT/MTM, August 2004 440 mm The LQA Overview (1) Fiber glass shaft (1) 40mm 10mm (2) Pick-up coil winded on a fiber glass support 400 turns of a 32µm diameter wire (2) (3) Electrical Connection unit (3) (4) Rollers (4) (5) Mechanical connections (5)

4 AT/MTM, August 2004 LQA Design & Measurement set-up Cross section Section 1 2 3 4 5 6 7 8 9 10 11 Longitudinal view LQA CS A1 LQA NCS A2LQA CS A2 LQA NCS A1 LHC Dipole Sections: 1,2………...11 11,10………...1 A B C D

5 AT/MTM, August 2004 Outer layer Inner layer Connection side (CS) Non-connection side (NCS) S01 S02 S03S04S05S06S07S08S10S11 S13S12 S01S02 S01S02S03S04S05S06S07S08S10S11S09 Longitudinal position of the LQA

6 AT/MTM, August 2004 Radial position & Compensation schema hf lf V AC = V A + V C V BD = V B + V D I A B C D 45º

7 AT/MTM, August 2004 The compensation having the higher voltage Indicates on which side the quench has started Quench localization : Right / Left A B C D V AC = V A + V C V BD = V B + V D

8 AT/MTM, August 2004 Quench Propagation No quench Spike Starting of the quench Quench in section 11

9 AT/MTM, August 2004 Asymmetry in the propagation fronts Quench Starting Size The Quench activated 2+1 coils at the same time Length of the initial normal zone is frequently of the order of the cable twist pitch

10 AT/MTM, August 2004 No signal on S03 The front is turning in S04 The quench started in inner Quench Localization: Blocks and turn back

11 AT/MTM, August 2004 Courtesy of E.Floch Quench localization : inner / outer

12 AT/MTM, August 2004 Overview of the Quench Performance by company AlstomAnsaldoNoellOverall Number9664119279 1 st quench level (T) 8.347.678.018.03  1st Q (T) 0.490.68 0.64 Number of Q to 12 kA 1.002.001.071.19  Number of Q (T) 1.511.301.151.25 Last trend of Q performance ↓→↓↓ Less “Bonus” magnets

13 AT/MTM, August 2004 Overview of the results (01)

14 AT/MTM, August 2004 Overview of the results (02)

15 AT/MTM, August 2004 Overview of the results (03)

16 AT/MTM, August 2004 Overview of quench performance of the few specific cases studied with LQA 1 st Q [T] 2 nd Q [T] Nb Q to 9T1 st Q ATC [T] Q Loc 1123 7.878.39> 8 -Detraining- 8.94 T 8.56Scattered & Straight Part of D2L 2036 8.048.46New criteria - 8.82 T -Scattered 2069 7.028.25> 8 -Detraining- 8.87 T 8.29 D1LS13(8)-D2LS13(6) 2523 8.188.54New criteria - 8.83 T - D2US13(2)-D1LS13- D2LSP (2023) 6.397.79> 88.21 D1US01(4)-D2LS01(3) 3061 8.038.40> 8 - 8.79 T8.59D2US01(9?+1) 3063 7.958.063 - Detraining8.44 D1LS13(2+7?)-D1LSP 3122 7.327.48> 8 -Detraining- 8.89 T 8.54 D1LS02(6)-D1US01 D2US01(5)-D2LS01

17 AT/MTM, August 2004 Magnets tested with Local Quench Antennas Q1 = 8.54 T Q9 = 8.71 T (LQA)Q9 = 8.89 T3122 Q1 = 8.44 T Q9 = 8.79 T (LQA) Q4 = 9 T but followed by strong detraining3063 Q1 = 8.59 T ; ramp to 9 T (LQA) Q9 = 8.79 T3061 tested in 2003 Q1 = 8.21 T ; Q2 = 8.54 T Q9 = 8.86 T2023 Q1 = 8.18 T Q2 = 8.54 T (LQA)2523 Q1 = 8.29 T Q2 = 8.67 T (LQA)detraining and Q9 = 8.812069 Q1 = 8.04 T Q2 = 8.43 T (LQA)2036 Comment Q1 = 8.56 T ; Q2 = 8.81 T (LQA)Q8 = 8.94 T Q9 = 8.46 T (LQA)1123 2 nd run1rst run

18 AT/MTM, August 2004 Connection side (CS) Non- connection side (NCS) Position of long shaft Position of short shaft Inner layer Outer layer Upper pole Outer layer Inner layer Lower pole S06S08S03 S01 S02S04S05S07S10S11S09 S01S04S06S08S10S02S03S05S07S11S09 S13 S01S02 S12 2036 a02_D1 a03_D2 a01_D1 QI (A) a0111426 a0212037 a0312571

19 AT/MTM, August 2004 a01 QI (A) a0111792 a0212358 a0312167 a0412212 a0512306 a0612481 Connection side (CS) Non-connection side (NCS) Position of long shaft Position of short shaft Inner layer Outer layer Upper pole Outer layer Inner layer Lower pole S06S08S03 S01 S02S04S05S07S10S11S09 S01S04S06S08S10S02S03S05S07S11S09 S13 S01S02 S12 2069 All in D2 a02 a03 a04anda06a05 a01

20 AT/MTM, August 2004 Connection side (CS) Non-connection side (NCS) Position of long shaft Position of short shaft Inner layer Outer layer Upper pole Outer layer Inner layer Lower pole S06S08S03 S01 S02S04S05S07S10S11S09 S01S04S06S08S10S02S03S05S07S11S09 S13 S01S02 S12 2523 a04_D1 a03_D2 a01_D2 QI (A) a0111636 a0212163 a03 a04 12437 12585

21 AT/MTM, August 2004 Connection side (CS) Non-connection side (NCS) Position of long shaft Position of short shaft Inner layer Outer layer Upper pole Outer layer Inner layer Lower pole S06S08S03 S01 S02S04S05S07S10S11S09 S01S04S06S08S10S02S03S05S07S11S09 S13 S01S02 S12 3061 n01_D1 a01_D2 QI (A) a0112239 n0110298

22 AT/MTM, August 2004 Connection side (CS) Non-connection side (NCS) Position of long shaft Position of short shaft Inner layer Outer layer Upper pole Outer layer Inner layer Lower pole S06S08S03 S01 S02S04S05S07S10S11S09 S01S04S06S08S10S02S03S05S07S11S09 S13 S01S02 S12 3063 a02_D1 a03_D1 QI (A) a0111636 a02 a03 a04 12163 12437 12585

23 AT/MTM, August 2004 Connection side (CS) Non-connection side (NCS) Position of long shaft Position of short shaft Inner layer Outer layer Upper pole Outer layer Inner layer Lower pole S06S08S03 S01 S02S04S05S07S10S11S09 S01S04S06S08S10S02S03S05S07S11S09 S13 S01S02 S12 3122 a05_D1 a06_D2a02_D2 a03_D2 a08_D1 a04_D1 QI (A) a0212155 a0312404 a0412562 a0512698 a0612765 a0812798

24 AT/MTM, August 2004 Summary of the LQA measurements Nb quench Nb inner Nb heads Nb CS Nb NCS Nb in “turning areas” (8 cm long on each side) Comments 11231244424Quenches widely distributed 2036 2069 2523 1321210211 Mostly Outer, CS, Block-2, turning point areas 3061 3063 31221079272 Mostly inner, NCS, straight part, but close to the transition areas Global3513 25 1621 17 70 % in the heads, 49 % in “turning” areas

25 AT/MTM, August 2004 Conclusions In general the quench performance of the magnets tested to day tends to degrade! –Price to pay for the increase of the production rate ? Mechanical weak points identified with LQA in Ansaldo 2036, 2069, 2523 magnets : –Quenches mostly in CS block-2 i.e. outer layer, –the beginning of the bending of turns, –Close to particular end spacers. Winding process and mechanics of the suspected region needs to be looked up. The LQA are efficient tools to make diagnostics of quench origins, to study the quench development & its propagation.


Download ppt "AT/MTM, August 2004 Quench Test Results obtained with The Local Quench Antennas on selected magnets M. Calvi S. Kouzue A. Forrester E. Floch P. Pugnat."

Similar presentations


Ads by Google