Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University.

Similar presentations


Presentation on theme: "Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University."— Presentation transcript:

1 Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University

2 Thanks to: W. Boeglin T.W. Donnelly (Nuclear physics course at MIT) J. Gilfoyle R. Gilman R. Niyazov J. Kelly (Adv. Nucl. Phys. 23, 75 (1996)) B. Reitz A.Saha S. Strauch E. Voutier L. Weinstein

3 Outline  Introduction  Background  Experimental  Theoretical  Nuclear Structure  Medium-modified nucleons  Cross sections  Polarization transfer  Studies of the reaction mechanism  Few-body nuclei  The deuteron  3,4 He

4 A(e,e'p)B Known: e and A Detect: e' and p e e'e' q A p B Infer: p m = q – p = p B

5 e'e' e vv A B + p (e,e'p) - Schematically B = A–1 A–2 + N Etc. i.e. bound

6 Kinematics e e'e' xx pA–1pA–1  pq p (,q)(,q) In ERL e : Q 2  – q  q  = q 2 –  2 = 4ee' sin 2  /2 Missing momentum: p m = q – p = p A–1 Missing mass:  m =  –T p – T A–1 scattering plane “out-of-plane” angle reaction plane

7 Some (Very Few) Experimental Details …

8 “accidental” (uncorrelated) e e e e'e' e'e' p e'e' p “real” (correlated) Detected

9 # events relative time: t e – t p rr aa

10 Accidentals Rate = R e  R p   /DF  I 2  /DF Reals Rate = R eep  I S:N = Reals/Accidentals  DF /(  I) Compromise: Optimize S:N and R eep

11 Extracting the cross section NeNe e e'e'N N (cm -2 ) (  e,  p e ) (  p,  p p ) p

12 Some Theory …

13 Cross Section for A(e,e'p)B in OPEA where Current-Current Interaction “A-1”

14 Square of Matrix Element  WW

15 Electron tensor Nuclear tensor Mott cross section Cross Section in terms of Tensors

16 3 indep. momenta: Q, P i, P (P A–1 = Q + P i – P) target nucleus ejectile 6 indep. scalars: P i 2, P 2, Q 2, QP i,QP, PP i = M A 2 = m 2 Consider Unpolarized Case Lorentz Vectors/Scalars

17 Nuclear Response Tensor X i are the response functions

18 Impose Current Conservation Get 6 equations in 10 unknowns 4 independent response functions

19 Putting it all together …

20 The Response Functions Use spherical basis with z-axis along q: Nuclear 4-current

21 Q P i =  M A P P i = E M A Q P =  E – q p cos  pq In lab: Can choose: Q 2, ,  m, p m Note: no  x dependence in response functions Response functions depend on scalar quantities

22 Including electron and recoil proton polarizations

23 Extracting Response Functions For instance: R LT and A  (=A LT )

24 Plane Wave Impulse Approximation (PWIA) e e'e' q p p0p0 A A–1 A-1 spectator p0p0 q – p = p A-1 = p m = – p 0

25 nuclear spectral function In nonrelativistic PWIA: For bound state of recoil system: proton momentum distribution The Spectral Function e-p cross section

26 The Spectral Function, cont’d. Note: S is not an observable!

27 Elastic Scattering from a Proton at Rest p (,q)(,q) (m,0)(m,0) p (  +m, q) Proton is on-shell  (  + m) 2  q 2 = m 2  2 + 2m  + m 2  q 2 = m 2  = Q 2  2m Before After

28 Scattering from a Proton, cont’d. Vertex fcn ++ ++ n p p p p p p 00 p p point proton structure/anomalous moment +++

29 Scattering from a Proton, cont’d. Dirac FFPauli FF Sachs FF’s Vertex fcn: G E and G M are the Fourier transforms of the charge and magnetization densities in the Breit frame.

30 r k k'k' Amplitude at q: Phase difference: Form Factor

31 Cross section for ep elastic However, (e,e'p) on a nucleus involves scattering from moving protons, i.e. Fermi motion.

32 Elastic Scattering from a Moving Proton p (,q)(,q) (E,p)(E,p) (  + E) 2 – (q+p) 2 = m 2  2 + 2E  + E 2  q 2  2pq  p 2 = m 2 Q 2 = 2E   2pq  (E/m) = (Q 2  2m) + pq  m Before p (  +E, q+p) After

33 Cross section for ep elastic scattering off moving protons Follow same procedure as for unpolarized (e,e'p) from nucleus We get same form for cross section, with 4 response functions …

34 Response functions for ep elastic scattering off moving protons

35 Quasielastic Scattering For E  m:   (Q 2  2m) + pq  m Expect peak at:   (Q 2  2m) Broadened by Fermi motion: pq  m If we “quasielastically” scatter from nucleons within nucleus:

36  Elastic Quasielastic  N*N* Deep Inelastic Nucleus  Elastic  N*N* Deep Inelastic Proton Electron Scattering at Fixed Q 2

37 6 Li 181 Ta 89 Y 58 Ni 40 Ca 24 Mg 12 C 118 Sn 208 Pb R.R. Whitney et al., Phys. Rev. C 9, 2230 (1974). Quasielastic Electron Scattering

38 Data: P. Barreau et al., Nucl. Phys. A402, 515 (1983). y-scaling analysis: J.M. Finn, R.W. Lourie and B.H. Cottman, Phys. Rev. C 29, 2230 (1984).

39 Nuclear Structure

40 U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964). First, a bit of history: The first (e,e'p) measurement Frascati Synchrotron, Italy 12 C(e,e'p) 27 Al(e,e'p)

41 (e,e'p) advantages over (p,2p) Electron interaction relatively weak: OPEA is reasonably accurate. Nucleus is very transparent to electrons: Can probe deeply bound orbits. However: ejected proton is strongly interacting. The “cleanness” of the electron probe is somewhat sacrificed. FSI must be taken into account.

42 Recall, in nonrelativistic PWIA: where q – p = p m = – p 0 FSI destroys simple connection between the measured p m and the proton initial momentum (not an observable).

43 e e'e' q p p0p0 FSI A–1A–1 A p0'p0' Final State Interactions (FSI)

44 Treat outgoing proton distorted waves in presence of potential produced by residual nucleus (optical potential). Distorted Wave Impulse Approximation (DWIA) “Distorted” spectral function

45 Optical potential is constrained by proton elastic scattering data. Problems with this approach: Residual nucleus contains hole state, unlike the target in p+A scattering. Proton scattering data is surface dominated, whereas ejected protons in (e,e'p) are produced within entire nuclear volume.

46 J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). 100 MeV data is significantly overestimated by DWIA near 2 nd maximum. NIKHEF-K Amsterdam

47 J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). At p m  160 MeV/c, wf is probed in nuclear interior.

48 J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). Adjusting optical potential renders good agreement while maintaining agreement with p+A elastic.

49 J. Mougey et al., Nucl. Phys. A262, 461 (1976). Saclay Linac, France 12 C(e,e'p) 11 B

50 J. Mougey et al., Nucl. Phys. A262, 461 (1976). Saclay Linac, France 12 C(e,e'p) 11 B p-shell l=1 s-shell l=0

51 G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B

52 G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B

53 G. van der Steenhoven, et al., Nucl. Phys. A480, 547 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B DWIA calculations fit data reasonably well. Missing strength observed however.

54 L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). 12 C(e,e'p) Bates Linear Accelerator

55 K.I. Blomqvist et al., Phys. Lett. B 344, 85 (1995). MAMI Mainz, Germany

56 K.I. Blomqvist et al., Phys. Lett. B 344, 85 (1995). MAMI Mainz, Germany Factorization violated. DWIA calculations underpredict at high p m. Neglected MEC’s & relativistic effects. Offshell effects uncertain at high p m.

57 I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994). AmPS NIKHEF-K Amsterdam 208 Pb(e,e'p)

58 I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994). 208 Pb(e,e'p) AmPS NIKHEF-K Amsterdam Long-range correlations important. SRC and TC less so, but expected to grow with  m.

59 Some of the lessons learned: (e,e'p) sensitive probe of single-particle orbits. Proton distortions (FSI) must be accounted for to reproduce shape of spectral function. Energy dependence of FSI breaks factorization. Missing strength in valence orbits, even after accounting for FSI At high P m significant discrepancies found relative to calculations.

60 Where does the “missing” strength go? One possibility: Detected recoils populates high  m

61 C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). n(k) total  m  12.25 MeV 2-body  m  300 MeV  m  50 MeV 3 He SRC dominate high k (=p m ) and are related to large values of  m.

62 C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). d Nucl. Matter 3 He 4 He Similar shapes for few-body nuclei and nuclear matter at high k (=p m ).

63 Medium-Modified Nucleons

64 Searching for Medium Effects on the Nucleon … In parallel kinematics: Can write ep elastic cross section as:

65 PWIA Relate R T /R L to in-medium proton FF’s This relies on (unrealistic) model assumptions! Nonetheless …

66 J.E. Ducret et al., Phys. Rev. C 49, 1783 (1994). 2 H(e,e'p)n 6 Li(e,e'p) DWIA NIKHEF-K Amsterdam J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990).

67 12 C(e,e'p) and 12 C(e,e')

68 D. Dutta et al., Phys. Rev. C 61, 061602 (2000). JLab Hall C

69 However, large FSI effects can mimic this behavior …

70 Dirac PWIA Dirac DWIA Schrödinger LDA FSI calculations for 16 O 1p 3/2 Data for 12 C 1p 3/2

71 Another, less model-dependent, method … Polarization Transfer

72 Proton Polarization and Form Factors * R. Arnold, C. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981). in nucleus model assumptions *

73 spectrometer + FPP 1 H and ( 2 H or 4 He) spectrometer Polarization Transfer in Hall A

74 Measuring the Proton Polarization: FPP

75 Density Dependent Form Factors For (e,e'p) D.H. Lu,, A.W. Thomas, K. Tsushima, A.G. Williams, K. Saito, Phys. Lett. B 417, 217 (1998). Quark-Meson Coupling Model (QMC):

76 D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams and K. Saito, Phys. Lett. B417, 217 (1998) and Phys. Rev. C 60, 068201 (1999). Quark-Meson Coupling Model 4 He

77 Calculations by Arenhövel JLab RDWIA calculations by Udias et al. Preliminary

78 Induced Polarization – 4 He JLab E93-049 P y =0 in PWIA: test of FSI Preliminary

79 PWIADWIA DWIA+spinor distortion DWIA+QMC S. Malov et al., Phys. Rev. C 62, 057302 (2000).

80 Studies of the Reaction Mechanism

81  Correlations MEC’s IC’s Correlations and Interaction Currents

82 Off-shell Effects Vertex function is not well defined. The “Gordon identity” leads to alternative forms, equivalent only when proton is on-shell. e e'e' q p p0p0 A A–1 initial proton is bound

83 D. Dutta et al., Phys. Rev. C 61, 061602 (2000).P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259 (1987). 12 C(e,e'p) L/T Separations Q 2 =0.15 GeV 2 Q 2 =0.64 GeV 2 Bates Linear AcceleratorJLab Hall C

84 D. Dutta et al., Phys. Rev. C 61, 061602 (2000). Excess transverse strength at high  m. Persists, though perhaps declines, at higher Q 2. JLab Hall C

85 J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990). 6 Li(e,e'p) T/L Ratio DWIA (dashed) fails to describe overall strength. Scaling transverse amplitude in DWIA (solid) gives good agreement  deduce scale factor, . NIKHEF-K Amsterdam

86 J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990). DWIA 6 Li(e,e'p) T/L Ratio NIKHEF-K Amsterdam

87 The L/T separations suggest Additional transverse reaction mechanism above 2-nucleon emission threshold. MEC’s primarily transverse in character. Suggestive of two-body current. Reminiscent of …

88 J.M. Finn, R.W. Lourie and B.H. Cottman, Phys. Rev. C 29, 2230 (1984). T/L anomaly in inclusive (e,e'):

89 R.W. Lourie et al., Phys. Rev. Lett. 56, 2364 (1986). 12 C(e,e'p) in “Dip Region” Data from: Bates Linear Accelerator Bates Linear Accelerator

90 L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). H. Baghaei et al., Phys. Rev. C 39, 177 (1989). 12 C(e,e'p) Quasielastic“Delta” Q 2 =0.30 Q 2 =0.48 Q 2 =0.58 Between dip and  Peak of  Bates Linear Accelerator

91 Figure adapted from J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). Missing Energy (MeV) 0 100 200300 12 C(e,e'p) q=990 MeV/c,  =475 MeV For 60<  m <100 MeV, continuum cross section increases strongly with . Large continuum strength continues up to 300 MeV. Bates Linear Accelerator

92 Figure adapted from J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). Missing Energy (MeV) 0 100 20050150 12 C(e,e'p) q=970 MeV/c,  =330 MeV Continuum strength increases strongly with . Continuum cross section is smaller at high  m. Bates Linear Accelerator

93 J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). 12 C(e,e'p) For  <  QE, spectroscopic factors consistent with naïve expectations. Bates Linear Accelerator

94 C.M. Spaltro et al., Phys. Rev. C 48, 2385 (1993). Circles (solid) – NIKHEF-KCrosses (dashed) - Saclay Large discrepancy for 1p 3/2. Relativistic effects predicted to be small here. Two-body currents responsible?? 16 O(e,e'p)

95 J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000). 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Relativistic DWIA gives good agreement with data. JLab Hall A

96 N. Liyanage et al., Phys. Rev. Lett. 86, 5670 (2001). Two-body calculations of Ryckebusch et al., give flat distribution, as seen in the data, but underpredict by a factor of two. 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic JLab Hall A

97 At high energies, R LT interference response function sensitive to relativistic effects. For example, spinor distortion …

98 Spinor Distortions N.R. reduction S+V  Mean field S+V relatively small Dirac spinor S–V affects lower components S–V large

99 J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000). 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Udias full Udias BS SD only Udias scatt. state SD only Udias - no SD Kelly 1p 1/2 1p 3/2 Sensitive to “spinor distortions” JLab Hall A

100 Few-body Nuclei …

101 The Deuteron

102 Short-distance Structure Low p m p n High p m p n For large overlap, nucleons may lose individual identities: Quark/gluon d.o.f.?

103 M. Bernheim et al., Nucl. Phys. A365, 349 (1981). Saclay Linac, France

104 P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301 (2002). p m (MeV/c) Arenhövel DWBA Arenhövel Full PWBA Jeschonnek or Arenhövel JLab Hall A Large FSI/non- nucleonic effects. Problem at p m =0.

105 D. Jordan et al., Phys. Rev. Lett. 76, 1579 (1996).

106 K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). MAMI Mainz, Germany Ducret et al. Bernheim et al. Jordan et al. Blomqvist et al. data cover kinematics beyond . Also neutron exchange diagram important.

107 K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). Calculations: H. Arenhövel FSI FSI+MEC+IC

108 Bonn Electron Synchrotron, Germany 2 H(e,e'p) Q 2 =0.23 GeV 2 near  Calculations: Leidemann and Arenhövel H. Breuker et al., Nucl. Phys. A455, 641 (1986). PWBA+FSI PWBA+FSI+MEC+IC PWBA+FSI+MEC  clearly important

109 q p n f Final State n f p Proton hit (high p m ) q n p Final State n f p f Neutron hit (low p m ) e q f p n f n p Proton spectator

110 p m (MeV/c) 0100200400500300600 P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301 (2002). Q 2 =0.67 GeV 2 Quasielastic Large FSI effects. Also, substantial non-nucleonic effects. JLab Hall A

111 Final State Interactions Can be LARGE p q f p'p' f p p'p' actual inferred

112 G. van der Steenhoven, Few-Body Syst. 17, 79 (1994). Wilbois/Arenhövel de Forest Hummel/Tjon Arenhövel/Fabian Mosconi/Ricci NR

113 What do all these data and curves suggest? Relativistic effects substantial in A  (and R LT ). de Forest “CC1” nucleon cross section gives same qualitative features as more complete calculations  here, relativity more related to nucleonic current, as opposed to deuteron structure.

114 I. Passchier et al., Phys. Rev. Lett. 88, 102302 (2002). D-state important AmPS NIKHEF-K Amsterdam

115 Lots more d(e,e'p) data on the way!

116 Perpendicular: R LT Q 2 : 0.80, 2.10, 3.50 (GeV/c) 2 x=1: p m from 0 to  0.5 GeV/c Parallel/Anti-parallel Q 2 : 2.10 (GeV/c) 2 vary x: p m from 0 to 0.5 GeV/c Neutron angular distribution Q 2 : 0.80, 2.10, 3.50 (GeV/c) 2 2 H(e,e'p)n E01-020 Hall A

117

118

119 2 H(e,e'p)n with JLab 12 GeV upgrade

120 Preliminary Hall B E5 Data – 2 H(e,e'p) Hall B data covers large range of Q 2 and excitation as well as  coverage to separate R LT, R LT ' and R TT.

121 3,4 He

122 C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p) Calculations by Laget: dashed=PWIA dot-dashed=DWIA solid=DWIA+MEC Saclay Linear Accelerator Arrows indicate expected position for correlated pair.

123 C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p)d 3 He(e,e'p)np 3BBU similar to d  np

124 JLab Hall A Large effects from FSI and non-nucleonic currents. Highest p m shows excess strength.

125 A LT JLab Hall A General features reproduced but not at correct values of p m.

126 The most direct way to look for correlated nucleons? Detect both of them  JLab Hall B

127 3 He(e,e'pp)n Hall B 2 GeV P N >250 MeV/c 4 GeV P N >250 MeV/c fast pn leading p PRELIMINARY 00.51 T p2 /  00.51 T p2 /  0 0.5 1 T p1 /  0 0.5 1 T p1 /  -0.5 0 10.5 cos(2 fast nucleon angle) -0.5 0 10.5 cos(2 fast nucleon angle)

128 Hall B 3 He(e,e'pp)n 2 GeV p perp < 300 MeV/c PRELIMINARY cos(  nq ) cos(  pq ) Isotropic fast pairs  pair not involved in reaction.

129 Hall B 3 He(e,e'pp)n Pair momentum along q [GeV/c] Small momentum along q  pair not involved in reaction. Little Q 2 or isospin dependence. p perp < 300 MeV/c PRELIMINARY 2 GeV has acceptance corrections

130 Before p n p After n p p Direct evidence of NN correlations

131 A. Magnon et al., Phys. Lett. B 222, 352 (1989). Saclay 4 He(e,e'p) 3 H Argonne+Mod 7 Urbana+Mod 7 Data and calculations “corrected” for MEC+IC (Laget). Longitudinal overpredicted. p m =90 MeV/c

132 J.E. Ducret et al., Nucl. Phys. A556, 373 (1993). Saclay 4 He(e,e'p) 3 H Calculations predict q dependence.

133 J.E. Ducret et al., Nucl. Phys. A556, 373 (1993). 4 He(e,e'p) 3 H Again, calculations predict q dependence.

134 J.J. van Leeuwe et al., Phys. Rev. Lett. 80, 2543 (1998). PWIA tree+one-loop tree PWIA +FSI +2-body PWIA +FSI +MEC/2B +MEC/3B Laget Schiavilla Nagorny Minimum filled in by FSI and 2&3-body currents. 4 He(e,e'p) 3 H AmPS NIKHEF-K Amsterdam

135 FSI: dependence on kinematics p q f p'p' f p p'p' actual inferred Large FSI q p f p p'p' f p'p' Small FSI

136 4 He(e,e'p) 3 H JLab Hall A Experiment E97-111, J. Mitchell, B. Reitz, J. Templon, cospokesmen It looks like the minimum is filled in here as well.

137 Summary (e,e'p) sensitive to single-particle aspects of nucleus, but … More complicated physics is clearly important. Spectroscopic factors reduced compared to naïve shell model (including FSI corrections). Missing strength at least partly due to interaction currents: direct interaction with with exchanged mesons or interaction with correlated pairs (spreads strength over  m ).

138 Summary cont’d. After several decades of experimental and theoretical effort, there are still unanswered questions. What is the nature of the interaction of the virtual photon with the “nucleon”: medium and offshell effects? Handling FSI and other reaction currents still problematic, though realistic calculations are now available for the lighter systems. High energy program is underway, pushing to shorter distance scales, emphasizing relativistic effects, …


Download ppt "Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University."

Similar presentations


Ads by Google