Presentation is loading. Please wait.

Presentation is loading. Please wait.

Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry

Similar presentations


Presentation on theme: "Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry"— Presentation transcript:

1 Mass Measurements on Superallowed β-Emitters Using Ramsey’s Excitation Method at ISOLTRAP
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry Ramsey Method Weak Interaction Studies

2 Principle of Penning Trap Mass Spectrometry
B PENNING trap Strong homogeneous magnetic field Weak electric 3D quadrupole field Cyclotron frequency: q/m end cap Typical frequencies q = e, m = 100 u, B = 6 T  f- ≈ 1 kHz f+ ≈ 1 MHz ring electrode Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

3 Triple-Trap Mass Spectrometer ISOLTRAP
10 cm precision Penning trap determination of cyclotron frequency (R = 107) 1,2 m B = 5.9 T preparation Penning trap removal of contaminant ions (R = 105) stable alkali ion reference source B = 4.7 T (dm/m)res = 10-8 cluster ion source G. Bollen et al., NIM A 368, 675 (1996) ion beam cooler and buncher K. Blaum et al., EPJ A 15, 245 (2002) A. Kellerbauer et al., EPJ D 22, 53 (2003)

4 Time-of-Flight Ion Cyclotron Resonance Detection
(3) TOF measurement 1 2 3 4 5 6 7 8 9 240 270 300 330 360 390 s m (2) Energy conversion Mean time of flight / Centroid: 63 Ga T = 32.4 s 1/2 Excitation frequency frf / Hz (1) Excitation of the ion motion Determine atomic mass from frequency ratio with a well-known “reference mass”.

5 The Ramsey Excitation Method
S. George et al., Phys. Rev. Lett. 98, (2007) 38Ca (T1/2 = 440 ms) A precision gain of more than a factor of 3 is obtained. S. George et al, Int. J. Mass Spectrom., in press (2007), doi: /j.ijms

6 First Online Application
Mass measurements on superallowed β-emitters 38Ca (T1/2=440ms) and 26Al (T1/2=6.35s)# Relative uncertainty at the level of 1*10-8 not limited by the statistical uncertainty ME(38Ca)= (60) keV and ME(26Ca)= (22) keV # The superallowed β-emitter is 26Alm K – Product of fund. constants GV – Vector coupling constant MV - Nuclear matrix element George S. et al, Phys. Rev. Lett. 98 (2007)

7 Experimental Access to FT-Value
Q – Decay energy  mass m T1/2 – Half-life b – Branching ratio PEC – Electron capture fraction δR – Radiative correction δC – Isospin symmetry breaking correction Unitarity of the CKM matrix Mean Ft value of all decay pairs contributes to Vud via GV Can check unitarity via sum of squares of elements of the first row dm/m < 3·10-8 Weak Interaction symmetry tests, CVC hypothesis m

8 CVC test An accuracy of the Q-value by some few 100 eV is reached by mass measurements. In addition required: Half-life Branching ratio ISOLTRAP: Mg-22, Al-26, Ar-34, Ca-38, Rb-74 F. Herfurth et al., Eur. Phys. J. A 15, 17 (2002) A. Kellerbauer et al., Phys. Rev. Lett.93, (2004) M. Mukherjee et al., Phys. Rev. Lett. 93, (2004) S. George et al., Phys. Rev. Lett. 98 (2007) JVL-TRAP: Al-26m, Sc-42, Ga-62 T. Eronen et al., Phys. Rev. Lett. 97, (2006) T. Eronen et al., Phys. Lett. B 636, 191 (2006) B. Hyland et al., Phys. Rev. Lett. 97, (2006) CPT: Mg-22, V-46 G. Savard et al., Phys. Rev. Lett. 95, (2005) J. Clark et al., Phys. Rec. C 70, (R) (2004) LEBIT: Ca-38 G. Bollen et al., Phys. Rev. Lett. 96 (2006) Further measurements at the Q3D magnetic spectrograph (T. Faestermann)

9 Thanks for funding and support:
THE END Thanks a lot to K. Blaum, M. Dworschak, C. Guénaut, A. Herlert, F. Herfurth, A. Kellerbauer, J. Ketelaer, H.-J. Kluge, M. Kretzschmar, M. Kowalska, D. Lunney, S. Nagy, D. Neidherr, S.Schwarz, L. Schweikhard, C. Yazidjian, and the ISOLTRAP and MATS collaboration Thanks for funding and support: GSI, BMBF, CERN, ISOLDE, HGF EU networks EUROTRAPS, EXOTRAPS, and NIPNET


Download ppt "Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry"

Similar presentations


Ads by Google