Presentation is loading. Please wait.

Presentation is loading. Please wait.

N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.

Similar presentations


Presentation on theme: "N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A."— Presentation transcript:

1 N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y MAXIM Periscope Module Instrument Systems Engineering Deborah Amato 25 April 2003

2 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p2 Final Version 25 April 2003 MAXIM Periscope Module A Pair of MAXIM Periscopes Detector Periscope Module X Z 1 2 3 4

3 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p3 Final Version 25 April 2003 MAXIM Periscope Module Launch Configuration 1 Detector spacecraft 26 Periscope spacecraft for 1000 cm 2 of collecting area: –25 free-flyers with 4 periscopes each –1 hub with 12 periscopes Free-flyer Hub and Detector spacecraft stacked Launch fairing envelope

4 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p4 Final Version 25 April 2003 MAXIM Periscope Module Operational Configuration at L2 S/CDist from hub (m) 110 211.8 313.9 416.4 519.4 622.9 727.0 831.9 937.6 1044.4 1152.3 1261.8 1372.9 1486.0 15101.5 16120.0 17141.3 18166.7 19196.7 20232.1 21274.9 22323.2 23381.4 24450.1 25531.1

5 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p5 Final Version 25 April 2003 MAXIM Periscope Module Periscope Coordinate System X Roll Y Pitch Yaw Z=LOS

6 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p6 Final Version 25 April 2003 MAXIM Periscope Module MAXIM Periscope Requirements Low mass and power Mounted mirror surface quality = rms for  = 1  Difference in entrance and exit mirror-pair spacing,  h Optical Path Difference between periscopes, OPD < x-ray /10 = 1Å Relative Strehl ratio > 80% Position Tolerances – next slide Must be able to open and close periscope aperture Must be able to align images on the detector plane MAXIM Mission Periscope Parameters for this study –Periscope spacecraft swarm diameter, D = 1 km* –Focal length, F = 20,000 km* –Mirror length, m = 30 cm –Mirror width = 20 cm –Graze angle,  = 1  –Wavelength, = 10Å * different values used in optical analysis

7 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p7 Final Version 25 April 2003 MAXIM Periscope Module MAXIM Position Tolerances =1nm, F=20,000km, D=1km, m=30cm,  =1deg,  h=1  m DOFMirror Equation Periscope Equation Mirror Tolerance Periscope Tolerance X ±1.7nm ±4  m Y ±0.3mm± 0.5mm Z ±94.7nm±0.32m X-rot (yaw) ±6.9 arcmin ± 7.8 arcmin Y-rot (pitch) ±2.3 marcsec ± 10 arcsec Z-rot (roll) ±0.13 arcsec ±18.5 arcsec

8 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p8 Final Version 25 April 2003 MAXIM Periscope Module  h and OPD – Key Requirements h2h2 h1h1 1 2 3 4  = 1  OPD < x-ray /10

9 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p9 Final Version 25 April 2003 MAXIM Periscope Module Trade Studies Mirror width: 2 cm, 10 cm, 20 cm, 30 cm –Need to quantify the flux requirement for initial calibration –Baseline design: 20 cm wide mirrors –Trade mirror size versus number of spacecraft – discussed in Optical Analysis section –Consider 20 cm versus 30 cm wide mirrors in future studies Mounted mirror surface quality is dependent on graze angle: rms for  = 1  rms for  = 2  –Chose  = 1  for this baseline design Internal metrology –Baseline design uses absolute position encoders calibrated with lasers in ground testing.

10 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p10 Final Version 25 April 2003 MAXIM Periscope Module Periscope Mass Summary

11 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p11 Final Version 25 April 2003 MAXIM Periscope Module Periscope Power Summary Spacecraft Power Bus Requirement End ItemsAvg. Power 1 Main Electronics Box 26.6 Watts Actuators @ 1 Watt each 1 Watts Drive Motors @ 1 Watt each 1 Watt Heaters 25 Watts Instrument Total: 53.6 Watts

12 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p12 Final Version 25 April 2003 MAXIM Periscope Module Future Studies This study looked at internal periscope issues – periscope to periscope tolerancing issues still need to be addressed. –Look at operational control and/or mechanical options Mirror width –2 cm width feasible? –30 cm width versus fewer spacecraft –Mirror material is a factor in this trade (silicon vs. ULE) Further thermal and mechanical design optimization should be done. See other subsystem presentations for other potential issues.

13 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p13 Final Version 25 April 2003 MAXIM Periscope Module Up Next Dennis Evans will discuss the optical analysis next.

14 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p14 Final Version 25 April 2003 MAXIM Periscope Module Backup

15 I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p15 Final Version 25 April 2003 MAXIM Periscope Module OPD The Optical Path Difference (OPD) between any two periscopes must be within 1Å. The OPD must be changeable with a larger (TBD) range. Ways to introduce Optical Path Differences: –Move mirrors 2 and 3 together (or 1 and 4 together) to get an OPD of 2  sin(  ); 3 nm of motion  1Å OPD –Move 1 mirror, range is less than ~1 micron to preserve  h; 1.5 nm of mirror motion  1Å OPD –Rotate a mirror pair by 1 milliarcsecond for 1Å of OPD –Move the entire periscope;  z of 30 cm  1Å OPD (remember periscopes are tied together in each spacecraft) –Move a mirror pair (1 and 2 or 3 and 4) in the X direction


Download ppt "N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A."

Similar presentations


Ads by Google