Presentation is loading. Please wait.

Presentation is loading. Please wait.

Atomic Physics with Supercomputers. Darío M. Mitnik.

Similar presentations


Presentation on theme: "Atomic Physics with Supercomputers. Darío M. Mitnik."— Presentation transcript:

1 Atomic Physics with Supercomputers. Darío M. Mitnik

2 Electron-Ion scattering calculations. Darío M. Mitnik

3 Atomic Physics with Supercomputers. Darío M. Mitnik

4 M. S. Pindzola, F. Robicheaux, J. Colgan, Auburn University, Auburn, AL D. C. Griffin, Rollins College, Winter Park, FL N. R. Badnell Strathclyde University, Glasgow, UK

5 Outline What are we calculating? Why do we need supercomputers for such calculations? How do we use the supercomputers in these calculations?

6 What are we calculating? Rate Coefficients Cross Sections

7 Electron-Impact Excitation kiki N  electron ion kfkf E th bb aa

8 Electron-Impact Excitation aa bb ii ff

9 (N  1) – electron ion kfkf keke Electron-Impact Ionization kiki EIEI N – electron ion aa

10 Electron-Impact Ionization aa ee ii ff

11 Radiative Recombination  N – electron ion EIEI (N+1) – electron ion kiki aa bb

12 Radiative Recombination M ba = bb a+ ia+ i  Photoionization: Radiative Recombination: M ab = 4  2 c 2 /(  2 k i ) |M ba | 2

13 Dielectronic Recombination M ba = bb a+ ia+ i  Photoionization: bb a+ ia+ i  nn nn +  n + i  n /2 +

14 N – electron ion bb EIEI (N+1) – electron ion Dielectronic Recombination kiki nn  aa

15 EIEI 1s 2 2s 1s 2 2s 2 Li-like Be-like 1s 2 2p 1s 2 2pnl 1s 2 2p 3/2 1s 2 2p 3/2 nl

16 Dielectronic Recombination D.M. Mitnik et al, Phys. Rev. A 61, 022705 (2000)

17 Dielectronic Recombination D.M. Mitnik et al, Phys. Rev. A 57, 4365 (1998)

18 Electron-ion Recombination D.M. Mitnik et al, Phys. Rev. A 59, 3592 (1999)

19 Excitation-Autoionization EIEI 1s 2 2s 1s 2 2s 2 Li-like Be-like 1s 2 2p 1s 2 2p 3/2 1s 2 2p 3/2 nl

20 Excitation-Autoionization D.M. Mitnik et al, Phys. Rev. A 53, 3178 (1996)

21 Excitation (resonances) EIEI 1s 2 2s 1s 2 2s 2 Li-like Be-like 1s 2 2p 1s 2 2p 3/2 1s 2 2p 3/2 nl

22 Excitation (resonances) D.M. Mitnik et al, Phys. Rev. A 62, 062711 (2000)

23 Excitation (resonances) D.C. Griffin et al, J. Phys. B 33, 4389 (2000)

24 Why supercomputers in Atomic Physics? only a few atomic physicists are using supercomputers

25 “Collisional breakup in a quantum system of three charged particles” M. S. Pindzola and F. Robicheaux, Phys. Rev. A 54, 2142 (1996). Why supercomputers in Atomic Physics? T. R. Rescigno et al., Science 286, 2474 (1999).

26 Electron-Impact Ionization of Hydrogen even the simplest example: e  + H H  + e  + e  has resisted solution until now

27 Methods Perturbative methods Non-Perturbative methods Distorted Waves Time-independent Time-dependent

28 Time-independent: R-matrix method P. G. Burke and K. A. Berrington 27 key papers reprinted Short Bibliography list: 547 references

29 Time-independent: R-matrix method Internal RegionExternal Region a Target H  = E   ~ sin(kr) + Kcos(kr)

30 Why supercomputers? Size of (N+1)-Hamiltonian : MXMAT = MZCHF x MZNR2 + MZNC2 # scattering channels # of continuum orbitals for given L # (N+1) terms for given SL  158 x 50 + 100 = 8000 ~ 512 Mb

31 Why supercomputers? Thousands of points are needed in order to map the narrow resonances. Energy (eV) Collision Strength D.C. Griffin et al, J. Phys. B 33, 4389 (2000)

32 Time-Dependent method Time-dependent Schrodinger equation:

33 Time-Dependent method Time-dependent close-coupled equation:

34 Why supercomputers? 16 x 250 x 250 = 1000000 250 x 250 = 62500 # coupled channels # partial waves # points in spatial lattice

35 Why supercomputers? Memory Time

36 What is a supercomputer? Distributed-Memory Shared-Memory

37 Glossary functional parallelism parallelization data parallelism

38 Example of data parallelism we have 10000 cards we want to pick up the highest card each comparison takes 1 second

39 Example of data parallelism 1 processor 10000  1 sec Time (sec) Processors 2 processors 5000  1  1 sec 10 processors 1008 sec 100 processors 198 sec 10000 processors 10000 sec

40 Example of a simple program print*, ‘hello world’ stop end call mpi_init call mpi_ rank(iam,nproc) print*, ‘hello world, from process # ’,iam call mpi_finalize stop end

41 Example of a simple program hello world hello world, from process 2 hello world, from process 0 hello world, from process 4 hello world, from process 1 hello world, from process 3

42 The R-matrix I package Inner-Region STG1 : calculates the orbital basis and all radial integrals STG2 : calculates LS-coupling matrix elements. solves the N-electron problem. sets the (N+1)-electron Hamiltonian STG3 : diagonalizes the (N+1)-electron Hamiltonian in the continuum basis

43 The R-matrix I package Outer-Region STGF : solves the external-region coupled equations. STGICF : calculates level-to-level collision strengths by doing an intermediate- coupling frame transformation.

44 Diagonalization Timing

45 Example 191 x 34 + 506 = 7000 62-state calculation: 191 coupled channels 34 continuum-box orbitals 506 (N+1)-electron bound configurations 55-state calculation (Dell 603): 59 h and 41 min 62-state calculation (T3E-900) : 64-processors - 69 min.

46 Parallelization of the external-region codes processor 1 processor 6

47 Time-Dependent method Time evolution of a single-channel: Time-dependent Schrodinger equation:

48 Time-Dependent method Initial condition for the solution:

49

50 Time-Dependent method

51 Propagated wavefunction:

52 Time-Dependent method Cross Section: Projection of the wavefunction:

53 Parallelization of the time-dependent codes processor 1 processor 6

54 Conclusions Atomic Physics is still alive

55


Download ppt "Atomic Physics with Supercomputers. Darío M. Mitnik."

Similar presentations


Ads by Google