Download presentation

Presentation is loading. Please wait.

Published byKamryn Mayhall Modified over 4 years ago

1
Spectroscopy at the Particle Threshold H. Lenske 1

2
Agenda: Pairing in the continuum Nuclear Polarizability and Spectral Functions Continuum spectroscopy and Fano-Resonances Summary 2

3
Pairing in the Continuum: Quasiparticle Resonances 3

4
Extended HFB Theory as Coupled Channels Problem: The Gorkov-Equations

5
Spectrum of the Gorkov Equation:

6
Extended HFB Theory: Pairing Self-Energies Energy Shifts and Widths Spectral Functions for particles and holes

7
7 Pairing in Infinite Nuclear Matter

8
Free Space SE (S=0,T=1) Interaction: (Bonn-B Potential) Pairing is a LOW DENSITY Phenomenon Pairing in Infinite Nuclear Matter

9
Pairing Gap Anomal Density Pairing Correlations in Nuclear Matter Pairing Gap and Anomal Density in Symmetric Nuclear Matter

10
Pairing-Field in a Nucleus RARA RARA

11
Neutron Spectrum : 11 Li : Continuum HFB Spectral Functions Dissolution of Shell Structures!

12
g.s. Densities g.s. Densities r 2 : 11 Li : Continuum HFB g.s. Densities

13
Neutron Spectral Functions in 9 Li(3/2-): Continuum Admixtures into the g.s. Continuum Admixtures!

14
Pairing in the Continuum S. Orrigo, H.L., PLB 677 (2009) 14

15
Pairing Resonances in Dripline Nuclei 9 Li+n 10 Li S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5 15

16
Continuum Spectroscopy at REX-ISOLDE: 10 Li= 9 Li+n d( 9 Li, 10 Li)p@2.36AMeV Data: H. Jeppesen et al., REX-ISOLDE Collaboration, NPA 738 (2004) 511 & NPA 748 (2005) 374. S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5 16

17
17 New experimental results (Dec. 2013): 10 Li continuum spectroscopy at TRIUMF S. Orrigo, M. Cavallo, F. Capppuzzello et al.

18
Spectral Structures by Dynamical Polarization 18

19
Beyond the Mean-Field: Short-range Correlations in Nuclear Matter PLB483 (2000) 324 NPA723 (2003) 544 NPA (2005)in print Momentum Distribution n(p) = N(k F ) a( p) d

20
20 Nuclear Dynamics…

21
E th [MeV]E exp [MeV] 2+2+ 3.2203.368 1-1- 6.4235.960 0+0+ 6.5136.179 2-2- 6.4466.263 3-3- 7.3727.371 4-(9.270) 1+1+ 7.122 3+3+ 7.159 0-0- 7.374 QRPA Response in 10 Be

22
DCP Neutron Spectral Distributions in 11 Be [0 + × 1/2+]: 0.79 [2 + × 5/2+]: 0.18 [0 + × 1/2-]: 0.58 [2 + × 3/2-]: 0.28

23
Spectral Distributions in Carbon Isotopes …normalized to sum rule E1 Dipole E2 Quadrupole

24
Polarizability of C-Isotopes: HFB+QRPA results Multipole polarizabilties coefficients by sum rules:

25
Longitudinal Momentum Distributions: 17,19 C → 16,18 C + n Carbon Target, E l ab 900 AMeV Binding: Correlation Dynamics 17 C(5/2+,g.s.) S n (the.)=715keV C 2 S(g.s.) = 0.41 (the.): 132 MeV/c (exp.): 143 ± 5 MeV/c (-1n,the.): 124 mb (-1n,exp.): 129± 22 mb Binding: Correlation Dynamics 19 C(1/2+,g.s.) S n (the.)=263keV C 2 S(g.s.) = 0.40 (the.): 69 MeV/c (exp.): 68 ± 3 MeV/c (-1n,the.): 192 mb (-1n,exp.): 233± 51 mb 17 C 19 C

26
Hole Spectrum Particle Spectrum DCP Calculations (HFB+QRPA Core excitations) DCP Calculations (HFB+QRPA Core excitations) DCP Calculations (HFB+QRPA Core excitations) DCP Calculations (HFB+QRPA Core excitations) Dynamical Core Polarization: HFB g.s.: „3-body renormalized“ G- Matrix ph-Interactions: Fermi Liquid Theory Fano Resonances

27
Interactions of Closed and Open Channels: Fano Resonances 27

28
The Spectral Situation encountered in Atoms, Molecules, Nuclei, and Hadrons A closed channel E* is embedded into a continuum of open channels E* interacts via V (r) with open channels given by scattering states E* Interacts via V (r) with closed channels, e.g. of (simple) bound states Bound State Embedded into the Continuum - BSEC 28

29
Examples: Atoms: self-ionizing states of multi-electron configuration Nuclei: Multi-particle-hole states above threshold Mesons: Confined qq-configurations embedded into the continuum of meson-meson scattering states, e.g. (1232), (770), ‘‘(3770)… Baryons: Confined qqq-configurations embedded into the continuum of meson-nucleon scattering states, e.g. (1232), N*(1440), (1405)… 29

30
Visualizing Quantum Interference in Microscopic Systems: Asymmetric Fano-Line Shapes of Resonances 30

31
Historically: The famous Silverman-Lassettre data He(e,e‘)He*( 1 P) @ 500eV Note: q must be negative – q=-1.84 31

32
Fano-Resonances in Nuclei 32

33
Hamiltonian and Wave function The coupled equations (core nucleus integrated out): Multi-channel Fano wave function: 33

34
34 Extension to Several Open Channels n=2 open channels n=2 energetically degenerate solutions with outgoing flux

35
35 Solution 1: fully mixed Solution 2: continuum mixed Resonance superimposed on a smoothly varying background! „Dark States“

36
36 Multi-channel Coupling

37
Resonance Scenarios in Nuclear Physics 37 The Fano-Wave Function:

38
Reaction Matrix Elements and Formation Cross Section The (single channel) Fano-Formula: 38

39
Correlation Dynamics in an Open Quantum System: d-wave Fano-Resonances in 15 C ~60…140keV Sonja Orrigo, H.L., Phys.Lett. B633 (2006) 39

40
Xu Cao, H. L., PRL, submitted DD-Dynamics at Threshold Channel Coupling and the Line Shape of (3770) 40 3.65 X(3900) ?? q=-2.1 ±0.6

41
Summary Dynamics at the particle threshold Pairing at the dripline/in the continuum Nuclear polarizabilities Fano resonances in atomic nuclei Tools for continuum spectroscopy Universality of quantum interference …with contributions by Sonja Orrigo (Valencia) and Xu Cao (Giessen/Lanzhou) 41

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google