Presentation is loading. Please wait.

Presentation is loading. Please wait.

LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.

Similar presentations


Presentation on theme: "LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most."— Presentation transcript:

1 LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most cellular work Heat energy

2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Redox Reactions: Oxidation and Reduction The transfer of electrons during chemical reactions releases energy stored in organic molecules This released energy is ultimately used to synthesize ATP

3 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation-reduction reactions, or redox reactions In oxidation, a substance loses electrons, or is oxidized In reduction, a substance gains electrons, or is reduced (the amount of positive charge is reduced) Xe - + Y X + Ye - becomes oxidized (loses electron) becomes reduced (gains electron)

4 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The electron donor is called the reducing agent The electron receptor is called the oxidizing agent

5 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Oxidation of Organic Fuel Molecules During Cellular Respiration During cellular respiration, the fuel (such as glucose) is oxidized and oxygen is reduced: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + Energy becomes oxidized becomes reduced

6 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Stepwise Energy Harvest via NAD + and the Electron Transport Chain In cellular respiration, glucose and other organic molecules are broken down in a series of steps Electrons from organic compounds are usually first transferred to NAD +, a coenzyme As an electron acceptor, NAD + functions as an oxidizing agent during cellular respiration Each NADH (the reduced form of NAD + ) represents stored energy that is tapped to synthesize ATP

7 LE 9-4 NAD + Nicotinamide (oxidized form) Dehydrogenase 2 e – + 2 H + 2 e – + H + NADH H+H+ H+H+ Nicotinamide (reduced form) + 2[H] (from food) +

8 LE 9-6_1 Mitochondrion Glycolysis Pyruvate Glucose Cytosol ATP Substrate-level phosphorylation

9 LE 9-6_2 Mitochondrion Glycolysis Pyruvate Glucose Cytosol ATP Substrate-level phosphorylation ATP Substrate-level phosphorylation Citric acid cycle

10 LE 9-6_3 Mitochondrion Glycolysis Pyruvate Glucose Cytosol ATP Substrate-level phosphorylation ATP Substrate-level phosphorylation Citric acid cycle ATP Oxidative phosphorylation Oxidative phosphorylation: electron transport and chemiosmosis Electrons carried via NADH Electrons carried via NADH and FADH 2

11 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis Citric acid cycle Oxidative phosphorylation ATP

12 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.2: Glycolysis harvests energy by oxidizing glucose to pyruvate Glycolysis (“splitting of sugar”) breaks down glucose into two molecules of pyruvate Glycolysis occurs in the cytoplasm and has two major phases: – Energy investment phase – Energy payoff phase

13 LE 9-9a_1 Glucose ATP ADP Hexokinase ATP Glycolysis Oxidation phosphorylation Citric acid cycle Glucose-6-phosphate

14 LE 9-9a_2 Glucose ATP ADP Hexokinase ATP Glycolysis Oxidation phosphorylation Citric acid cycle Glucose-6-phosphate Phosphoglucoisomerase Phosphofructokinase Fructose-6-phosphate ATP ADP Fructose- 1, 6-bisphosphate Aldolase Isomerase Dihydroxyacetone phosphate Glyceraldehyde- 3-phosphate

15 LE 9-9b_1 2 NAD + Triose phosphate dehydrogenase + 2 H + NADH 2 1, 3-Bisphosphoglycerate 2 ADP 2 ATP Phosphoglycerokinase Phosphoglyceromutase 2-Phosphoglycerate 3-Phosphoglycerate

16 LE 9-9b_2 2 NAD + Triose phosphate dehydrogenase + 2 H + NADH 2 1, 3-Bisphosphoglycerate 2 ADP 2 ATP Phosphoglycerokinase Phosphoglyceromutase 2-Phosphoglycerate 3-Phosphoglycerate 2 ADP 2 ATP Pyruvate kinase 2 H 2 O Enolase Phosphoenolpyruvate Pyruvate

17 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.3: The citric acid cycle completes the energy-yielding oxidation of organic molecules Before the citric acid cycle can begin, pyruvate must be converted to acetyl CoA, which links the cycle to glycolysis

18 LE 9-10 CYTOSOL Pyruvate NAD + MITOCHONDRION Transport protein NADH + H + Coenzyme ACO 2 Acetyl Co A

19 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The citric acid cycle, also called the Krebs cycle, takes place within the mitochondrial matrix The cycle oxidizes organic fuel derived from pyruvate, generating one ATP, 3 NADH, and 1 FADH 2 per turn

20 LE 9-11 Pyruvate (from glycolysis, 2 molecules per glucose) ATP Glycolysis Oxidation phosphorylation Citric acid cycle NAD + NADH + H + CO 2 CoA Acetyl CoA CoA Citric acid cycle CO 2 2 3 NAD + + 3 H + NADH3 ATP ADP + P i FADH 2 FAD

21 LE 9-12_1 ATP Glycolysis Oxidation phosphorylation Citric acid cycle Citric acid cycle Citrate Isocitrate Oxaloacetate Acetyl CoA H2OH2O

22 LE 9-12_2 ATP Glycolysis Oxidation phosphorylation Citric acid cycle Citric acid cycle Citrate Isocitrate Oxaloacetate Acetyl CoA H2OH2O CO2CO2 NAD + NADH + H +  -Ketoglutarate CO2CO2 NAD + NADH + H + Succinyl CoA

23 LE 9-12_3 ATP Glycolysis Oxidation phosphorylation Citric acid cycle Citric acid cycle Citrate Isocitrate Oxaloacetate Acetyl CoA H2OH2O CO2CO2 NAD + NADH + H +  -Ketoglutarate CO2CO2 NAD + NADH + H + Succinyl CoA Succinate GTP GDP ADP ATP FAD FADH 2 P i Fumarate

24 LE 9-12_4 ATP Glycolysis Oxidation phosphorylation Citric acid cycle Citric acid cycle Citrate Isocitrate Oxaloacetate Acetyl CoA H2OH2O CO2CO2 NAD + NADH + H +  -Ketoglutarate CO2CO2 NAD + NADH + H + Succinyl CoA Succinate GTP GDP ADP ATP FAD FADH 2 P i Fumarate H2OH2O Malate NAD + NADH + H +

25 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis Following glycolysis and the citric acid cycle, NADH and FADH 2 account for most of the energy extracted from food These two electron carriers donate electrons to the electron transport chain, which powers ATP synthesis via oxidative phosphorylation

26 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Pathway of Electron Transport The electron transport chain is in the cristae of the mitochondrion Most of the chain’s components are proteins, which exist in multiprotein complexes The carriers alternate reduced and oxidized states as they accept and donate electrons Electrons drop in free energy as they go down the chain and are finally passed to O 2, forming water

27 LE 9-13 ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle NADH 50 FADH 2 40 FMN FeS I FAD FeS II III Q FeS Cyt b 30 20 Cyt c Cyt c 1 Cyt a Cyt a 3 IV 10 0 Multiprotein complexes Free energy (G) relative to O2 (kcal/mol) H2OH2O O2O2 2 H + + 1 / 2

28 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The electron transport chain generates no ATP The chain’s function is to break the large free- energy drop from food to O 2 into smaller steps that release energy in manageable amounts

29 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chemiosmosis: The Energy-Coupling Mechanism Electron transfer in the electron transport chain causes proteins to pump H + from the mitochondrial matrix to the intermembrane space H + then moves back across the membrane, passing through channels in ATP synthase ATP synthase uses the exergonic flow of H + to drive phosphorylation of ATP This is an example of chemiosmosis, the use of energy in a H + gradient to drive cellular work

30 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The energy stored in a H + gradient across a membrane couples the redox reactions of the electron transport chain to ATP synthesis The H + gradient is referred to as a proton-motive force, emphasizing its capacity to do work

31 LE 9-15 Protein complex of electron carriers H+H+ ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle H+H+ Q III I II FAD FADH 2 + H + NADH NAD + (carrying electrons from food) Inner mitochondrial membrane Inner mitochondrial membrane Mitochondrial matrix Intermembrane space H+H+ H+H+ Cyt c IV 2H + + 1 / 2 O 2 H2OH2O ADP + H+H+ ATP synthase Electron transport chain Electron transport and pumping of protons (H + ), Which create an H + gradient across the membrane P i Chemiosmosis ATP synthesis powered by the flow of H + back across the membrane Oxidative phosphorylation

32 LE 9-16 CYTOSOL Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION Oxidative phosphorylation: electron transport and chemiosmosis 2 FADH 2 2 NADH6 NADH Citric acid cycle 2 Acetyl CoA 2 NADH Glycolysis Glucose 2 Pyruvate + 2 ATP by substrate-level phosphorylation + 2 ATP by substrate-level phosphorylation + about 32 or 34 ATP by oxidation phosphorylation, depending on which shuttle transports electrons form NADH in cytosol About 36 or 38 ATP Maximum per glucose:

33 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.5: Fermentation enables some cells to produce ATP without the use of oxygen Cellular respiration requires O 2 to produce ATP Glycolysis can produce ATP with or without O 2 (in aerobic or anaerobic conditions) In the absence of O 2, glycolysis couples with fermentation to produce ATP

34 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Types of Fermentation Fermentation consists of glycolysis plus reactions that regenerate NAD +, which can be reused by glycolysis Two common types are alcohol fermentation and lactic acid fermentation

35 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In alcohol fermentation, pyruvate is converted to ethanol in two steps, with the first releasing CO 2 Alcohol fermentation by yeast is used in brewing, winemaking, and baking

36 LE 9-17a CO 2 + 2 H + 2 NADH2 NAD + 2 Acetaldehyde 2 ATP 2 ADP + 2 P i 2 Pyruvate 2 2 Ethanol Alcohol fermentation Glucose Glycolysis

37 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In lactic acid fermentation, pyruvate is reduced to NADH, forming lactate as an end product, with no release of CO 2 Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt Human muscle cells use lactic acid fermentation to generate ATP when O 2 is scarce

38 LE 9-17b CO 2 + 2 H + 2 NADH2 NAD + 2 ATP 2 ADP + 2 P i 2 Pyruvate 2 2 Lactate Lactic acid fermentation Glucose Glycolysis

39 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Evolutionary Significance of Glycolysis Glycolysis occurs in nearly all organisms Glycolysis probably evolved in ancient prokaryotes before there was oxygen in the atmosphere


Download ppt "LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most."

Similar presentations


Ads by Google