Presentation is loading. Please wait.

Presentation is loading. Please wait.

Everything you wanted to know about ENZYMES, and more!

Similar presentations


Presentation on theme: "Everything you wanted to know about ENZYMES, and more!"— Presentation transcript:

1 Everything you wanted to know about ENZYMES, and more!

2 So – just what is an enzyme?
Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

3 If you are not sure think about the following scenarios...
You need to light a fire, and the only tools you have are two sticks that you can rub together. You need to light a fire, and the only tool you have is a match. You need to light a fire, and the only tool you have is a flint (which when struck, creates sparks).

4 Things to think about... Would all three scenarios work?
Other than type of tool used, what is the main difference between them? If you needed to light another fire, could you do so (assuming other one completely went out)? Now lets find out what an enzyme actually is – as we are doing so, decide which scenario most closely represents the role of enzymes.

5 What is an Enzyme?

6 What are they? Enzymes are proteins Function is to catalyze reactions
A catalyst is a substance that speeds up the rate of a chemical reaction by lowering the activation energy required for the reaction to begin Catalysts are reusable, that is they are not consumed in processes, so they can be recycled for other reactions

7 Why do we need enzymes? All reactions, energy to begin a reaction
This energy is called the Activation energy(EA) Most chemical reactions in cells reach the state of activation too slowly on their own Increasing temperature, speeds up the process, but this has draw backs in living organisms ....what might that be?

8 Why do we need enzymes? Another way – to increase rate of chemical reactions without increasing temperature is to use a catalyst catalysts function by lowering the activation energy of the reaction Almost all chemical reactions in organisms are facilitated by enzymes So – which scenario most closely matches the function of an enzyme?

9 If you are not sure think about the following scenarios...
You need to light a fire, and the only tools you have are two sticks that you can rub together. You need to light a fire, and the only tool you have is a match. You need to light a fire, and the only tool you have is a flint (which when struck, creates sparks).

10 Reactions with and without a Catalyst
Exergonic Reaction – a chemical reaction that releases energy EA = Activation Energy Energy Supplied Energy Released Reactions with and without a Catalyst

11 Reactions with and without a Catalyst
Endergonic Reaction – chemical reaction that requires energy Energy Supplied Energy Released Reactions with and without a Catalyst

12 How does it all work? What ways can you think of that would allow an enzyme to decrease the activation energy of a reaction?

13 How does it all work? Each enzyme contains an active site
An active site is a 3-D pocket or indentation on its surface It matches the shape of the substrate and is the site on an enzyme where the substrate binds Originally thought of as a key-and-lock model

14 How does it all work? A substrate is a reactant that interacts with the enzyme in an enzyme-catalyzed reaction They form an enzyme-substrate complex Enzyme-substrate complexes are highly specific

15 E.g. Enzymatic Hydrolysis of Sucrose
Q: Do you think maltose could also be a substrate for this enzyme? Why or why not? In this enzyme-catalyzed reaction, the disaccharide sucrose is broken down into glucose and fructose. For this to occur, sucrose interacts in a very specific manner with the active site of the enzyme

16 How does it all work? Now the thinking is:
Enzymes can adjust their shapes slightly to accommodate a substrate This adjustment allows the substrate to fit in the active site, and the change in the active site of the enzyme is called induced fit

17 enzyme-substrate complex
Substrate Binding induced-fit model - enzyme changes shape upon substrate binding enzyme-substrate complex Enzymes are not static.

18 Model Comparison Two proposed models:
Lock-and-key model: this assumes that the active site is a perfect fit for a specific substrate (once the substrate binds there is no further modification) Induced fit model: developed from the lock and key model Change in shape to: bring R-groups closer to substrate bend bonds to make them easier to break / react reduce EA (makes transition state easier) bring two reactants close together provide a microenvironment for reactions

19 How enzymes Work Regardless of model
Enzymes prepare substrates for reaction by: Changing the substrate Its environment Or both in some way With the end result being a lowering of the activation energy of the reaction.

20 How enzymes Work E.g., bring two substrates together in the correct position for a reaction to occur Add or remove hydrogen ions to or from the substrate (i.e., act as an acid or base), destabilizing it and making it more likely to react

21 How enzymes Work Transfer electrons to or from the substrate (i.e., reduces or oxidizes it), which destabilizes it and makes it morel likely to react Contain amino acid R groups that end up close to certain chemical bonds in the substrate, causing these bonds to stretch or bend, which makes the bonds weaker and easier to break

22 Steps to Enzyme Reactions
Substrate binds to available active site pocket. Enzyme changes shape to envelope substrate(s) Reaction occurs Products lose affinity for the active site Enzyme is set for another substrate Whole cycle called catalytic cycle.

23 Enzyme Factors Some enzymes require non-protein molecules to operate
Coenzymes = organic molecules that assist an enzyme Cofactors = inorganic molecules that assist an enzyme (e.g., metal ions, iron, zinc)

24 Enzyme Classification
Enzymes are classified according to the type of reaction they catalyze E.g., hydrolases = enzymes that catalyze hydrolysis reactions Each enzyme has a unique name, ending in “-ase”, beginning with first part of the substrate name E.g., lactase (breaks down lactose)

25 Factors that affect enzymes
Any ideas? There are four of them. What might be the consequences?

26 Factors Affecting Enzyme Activity
Temperature pH value Concentration of substrate Concentration of the enzyme itself

27 Temperature As temperature rises  increase in rates of reactions.....to a degree! Which causes the rate of enzymatic reaction to increase as well Every enzyme has a specific or optimal temp. where its activity is the greatest. E.g. body enzymes has optimal temp. 37.5oC At higher temp. intra and intermolecular bonds are broken as enzymes gain more kinetic energy, they become denatured.

28 pH Each enzyme works within quite a small pH range.
Activities are greatest at optimal pH Changes in pH break intra- and intermolecular bonds, changing the shape of the enzyme, and effectiveness.

29 Effect of Temperature and pH on Enzyme Activity

30 Limitations of Enzymes
only a set number of each type of enzyme in body reactions have a maximum rate

31 Concentration of enzyme and substrate
Rate of reaction increases with increasing substrate concentration up to a point, Above which any further increase in substrate concentration produces no significant change in reaction rate. Why? – because the active sites of the enzymes molecules at any given moment are virtually saturated with substrate. Enzyme/substrate complex has to dissociate before the active sites are free to accommodate more substrate

32 Provided that the substrate concentration is high and that temperature and pH are kept constant, the rate of reaction is proportional to the enzyme concentration.

33 Enzymes Regulation Can you think of anyway enzymes can be controlled or kept in check?

34 Regulation of Enzyme Activity
Regulate enzyme activity through use of inhibitors Inhibitor = a molecule that binds to the allosteric or active site of an enzyme and causes a decrease in the activity of that enzyme Allosteric site = a site on an enzyme that is not the active site, where other molecules can interact with and regulate the activity of the enzyme Competitive: estrogen / tamoxifen / BPA example

35 Regulation of Enzyme Activity
Competitive inhibitor – binds to the same active site as the substrate noncompetitive inhibitor – binds to an alternate site (allosteric site) on the enzyme to keep it in an inactive form (no longer has affinity for substrate) Competitive: estrogen / tamoxifen / BPA example

36 Q: What happens if a competitive inhibitor is present, but in a lower concentration than the substrate? In higher concentration?

37 Competitive Inhibition

38 Non-competitive Inhibition
Note: If binding and reduction of enzyme is permanent, then the substance binding to the enzyme is considered a toxin

39 Regulation of Enzyme Activity
Also regulate enzyme activity through use of activator molecules. Molecules that promote the action of enzymes and which bind to the allosteric site of an enzyme. The regulation of enzyme activity by activators and inhibitors binding to allosteric sites is called allosteric regulation

40 Allosteric Sites Note the two enzyme forms.
- identify various allosteric sites - note the different shapes between subunits

41 Feedback Inhibition a method for cells to regulate metabolic pathways (i.e., maintain homeostasis) often, products at the end of a series of a reaction will act as an allosteric inhibitor to shut the reactions down A, B, C and D are molecules along a metabolic pathway. E1, E2 and E3 are enzymes required for this metabolic pathway. D is an allosteric inhibitor of E1.

42 Feedback Inhibition

43 Enzymes in Everyday Life

44 Use of Enzymes Includes industrial and commercial purposes
E.g. proteases are used in the dairy industry to produce cheese proteases, along with amylase, are also added to detergents to help remove protein and carbohydrate produced stains

45

46 What you should have learned
Examine enzymatic pathways, Focus on how they inhibit or activate reactions Use appropriate terminology related to biochemistry e.g. allosteric, substrate, substrate-enzyme complex, inhibition Describe the chemical structures and mechanisms of various enzymes Analyse technology applications related to enzyme activity in the food and pharmaceutical industries

47 Homework Pg. 77, Q 1, 2, 4-9

48 Unit 1- Quest 2 (Monday) Focus – macromolecules and biochemical reactions, including enzymes (not thermodynamics) To be given Multiple choice Short answers Application questions


Download ppt "Everything you wanted to know about ENZYMES, and more!"

Similar presentations


Ads by Google