Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stable and Tuneable Laser Plasma Accelerators

Similar presentations


Presentation on theme: "Stable and Tuneable Laser Plasma Accelerators"— Presentation transcript:

1 Stable and Tuneable Laser Plasma Accelerators
J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761 Palaiseau, FRANCE Partially supported by CARE/PHIN FP6 project LOA INFN, Frascati, November 16 (2006)

2 INFN, Frascati, November 16 (2006)
Summary Part 1 : Laser plasma accelerator : motivation Part 2 : Production of monoenergetic electron beam Part 3 : New scheme of injection : toward a stable, tuneable and quasi monoenergetic electron beam. Part 4 : Conclusion and perspectives LOA INFN, Frascati, November 16 (2006)

3 Classical accelerator limitations
E-field max ≈ few 10 MeV /meter (Breakdown) R>Rmin Synchrotron radiation Courtesy of W. Mori & L. da Silva Plasma cavity 100 mm 1 m RF cavity LOA INFN, Frascati, November 16 (2006)

4 INFN, Frascati, November 16 (2006)
Laser plasma injector Scheme of principle Experimental set up LOA INFN, Frascati, November 16 (2006)

5 Energy distribution improvements:
The Bubble regime Charge in the peak : pC Divergence = 6 mrad Experiment PIC At LOA J. Faure et al. Nature (2004) LOA INFN, Frascati, November 16 (2006)

6 Quasi-monoenergetic beams reported in the litterature
Article Energy dE/E Charge Ne Intensity tL/Tp Remark Name Lab [MeV] [%] [pC] [x1018 /cm 3 ] [x10 18 W/cm 2 ] Mangles Nature (2004) RAL 73 6 22 20 2,5 1,6 Geddes Nature (2004) L'OASIS 86 2 320 19 11 2,2 Channel Faure Nature (2004) LOA 170 25 500 6 3 0,7 Hidding PRL (2006) JETI 47 9 0,32 40 50 4,6 Hsieh PRL (2006) IAMS 55 336 40 2,6 Hosokai PRE (2006) U. Tokyo 11,5 10 10 80 22 3,0 Preplasma Miura APL (2005) AIST 7 20 432E-6 130 5 5,1 Hafz PRE (2006) KERI 4,3 93 200 28 1 33,4 Mori ArXiv (2006) JAERI 20 24 0,8 50 0,9 4,5 Mangles PRL (2006) Lund LC 150 20 20 5 1,4 Several groups have obtained quasi monoenergetic e beam but at higher density (tL>tp) LOA INFN, Frascati, November 16 (2006)

7 GeV electron beams from a « centimetre-scale » accelerator
310-μm-diameter channel capillary P = 40 TW density 4.3×1018 cm−3. Leemans et al., Nature Physics, september 2006 LOA INFN, Frascati, November 16 (2006)

8 INFN, Frascati, November 16 (2006)
Laser plasma injector : GeV electron beams w = 20 m t 30 fs a 4 l . 8 P 200 TW n p 1 5 × 10 18 cm - 3 After 5 Zr / 7.5 mm 0.5 1 1.5 2 2.5 800 1200 1600 2000 Energy (MeV) f(E) (a.u.) Courtesy of UCLA& Golp groups LOA INFN, Frascati, November 16 (2006)

9 INFN, Frascati, November 16 (2006)
Laser plasma injector : + good efficiency : Ee-beam/Elaser  10 % + simple device + with channel : GeV range is obtained1 with moderate laser power* *But since the efficiency is conserved a compromise between charge and energy must be found Stability not yet demonstrated : in progress - Energy spread still too large for some applications : dE/E  few % * Courtesy of S. Hoocker or F. S. Tzung PRL (2004 LOA INFN, Frascati, November 16 (2006)

10 INFN, Frascati, November 16 (2006)
Controlling the injection pump injection Counter-propagating geometry: Plasma wave Principle: Pump beam electrons Injection beam Ponderomotive force of beatwave: Fp ~ 2a0a1/λ (a0 et a1 can be “weak”)y Boost electrons locally and injects them: y INJECTION IS LOCAL IN FIRST BUCKET y E. Esarey et al, PRL 79, 2682 (1997), G. Fubiani et al. (PRE 2004) LOA INFN, Frascati, November 16 (2006)

11 Experimental set-up to shadowgraphy diagnostic electron spectrometer
Probe beam LANEX Gas jet B Field Injection beam Pump beam 250 mJ, 30 fs ffwhm=30 µm I ~ 4×1017 W/cm2 a1=0.4 700 mJ, 30 fs, ffwhm=16 µm I ~ 3×1018 W/cm2 a0=1.2

12 INFN, Frascati, November 16 (2006)
LOA INFN, Frascati, November 16 (2006)

13 From self-injection to external injection
pump Single beam ne=1.25×1019 cm-3 ne=1019 cm-3 Self-injection Threshold ne=7.5×1018 cm-3 pump injection 2 beams ne=7.5×1018 cm-3 LOA INFN, Frascati, November 16 (2006)

14 Optical injection by colliding pulses
leads to stable monoenergetic beams STATISTICS value and standard deviation Bunch charge= 19pC, s = 6.8 pC Peak energy= 117MeV, s = 7 MeV DE= 13MeV, s = 2.5 MeV DE/E= 11 %, s = 2 % Divergence= 5.7 mrad Pointing stability= 1.8 mrad *Charge measurements with absolute calibration of Lanex film (ICT gave a factor of 8 higher charge) LOA INFN, Frascati, November 16 (2006)

15 Monoenergetic bunch comes from colliding pulses: polarization test
Parallel polarization Crossed polarization LOA INFN, Frascati, November 16 (2006)

16 Controlling the bunch energy by controlling the acceleration length
By changing delay between pulses: Change collision point Change effective acceleration length Tune bunch energy Pump beam Injection beam 2 mm Gas jet LOA INFN, Frascati, November 16 (2006)

17 Tunable monoenergetic bunches
pump injection late injection early injection middle injection Zinj=225 μm Zinj=125 μm Zinj=25 μm Zinj=-75 μm Zinj=-175 μm Zinj=-275 μm Zinj=-375 μm LOA INFN, Frascati, November 16 (2006)

18 Tunable monoenergetic electrons bunches:
190 MeV gain in 700 µm: E=270 GV/m Compare with Emax=mcwp/e=250 GV/m at ne=7.5×1018 cm-3 LOA INFN, Frascati, November 16 (2006)

19 Conclusions / perspectives
SUMMARY Optical injection by colliding pulse: it works ! Monoenergetic beams trapped in first bucket Enhances dramatically stability Energy is tunable: MeV Charge up to 80 pC in monoenergetic bunch dE/E down to 5 % (spectrometer resolution), dE ~ MeV Duration shorter than 10 fs. PERSPECTIVES Q Combine with waveguide: tunable up to few GeV’s with dE/E ~ 1 % Design future accelerators Model the problem for further optimization: higher charge Stable source: extremely important accelerator development (laser based accelerator design) light source development for XFEL applications (chemistry, radiotherapy, material science) LOA INFN, Frascati, November 16 (2006)

20 LOA/CARE_PHIN : List of publications in refereed journals
16 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses J. Faure, C. Rechatin, A. Norlin, A. F. Lifschitz, Y. Glinec, V. Malka, Accepted in Nature (2006) 15 Staged concept of laser plasma acceleration toward multi GeV electrons beams V. Malka, J. Faure, Y. Glinec, A. Lifschitz, to be published to PR -STA 14 Absolute calibration for a broadrange single shot electron spectrometer Y. Glinec, J. Faure, A. Guemnie-Tafo, V. Malka, et al., RS 2006I. 13 Ultra short laser pulses and ultra short electron bunches generated in relativistic laser plasma interaction. J. Faure, Y. Glinec, G. Gallot, and V. Malka, Phys. Plasmas 13, (2006). 12 Design of a compact GeV Laser Plasma Accelerator V.Malka, A. F. Lifschitz, J. Faure, Y. Glinec, NIM A 561, p (2006) 11 Wakefield acceleration of low energy electron bunches in the weakly nonlinera regime A. F. Lifschitz, J. Faure, Y. Glinec, V. Malka, NIM A 561, p (2006) 10 Proposed Scheme for Compact GeV Laser Plasma Accelerator A. Lifschitz, J. Faure, Y. Glinec, P. Mora, and V. Malka, Laser and Particle Beams 24, (2006) 9 Radiotherapy with laser-plasma accelerators: application of an experimental quasi-monoenergetic electron beam Y. Glinec, J. Faure, T. Fuchs, H. Szymanowski, U. Oelfke, and V. Malka, Med. Phys. 33, (1) (2006) 8 Laser-plasma accelerator: status and perspectives V. Malka, J. Faure, Y. Glinec, A.F. Lifschitz, Royal Society Philosophical Transactions A, 364, 1840, (2006) 7 Observation of laser pulse self-compression in nonlinear plasma waves J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, Phys. Rev. Lett. 95, (2005). 6 Laser-plasma accelerators: A new tool for science and for society V. Malka, J. Faure, Y. Glinec, and A.F. Lifschitz, Plasmas Physics and Controlled Fusion 47 (2005) B481-B490. 5 GeV Wakefield acceleration of low energy electron bunches using Petawatt lasers A.F. Lifschitz, J. Faure, V. Malka, and P. Mora, Phys. of Plasmas 12, (2005). 4 Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses Y. Glinec, J. Faure, A. Pukhov, S. Gordiendko, S. Kiselev, V. Malka, Laser and Particle beams 23, (2005). 3 Monoenergetic electron beam optimisation in the bubble regime V. Malka, J. Faure, Y. Glinec, A. Pukhov, J.P. Rousseau, Phys. of Plasmas 12, (2005). 2 High-resolution -ray radiography produced by a laser-plasma driven electron source Y. Glinec, J. Faure, L. Le Dain, et al., Phys. Rev. Lett.94 (2005). 1 A laser-plasma accelerator producing monoenergetic electron beams J. Faure, Y. Glinec, A. Pukhov, et al., Nature 431, 541, 30 septembre (2004). INFN, Frascati, November 15 (2006)


Download ppt "Stable and Tuneable Laser Plasma Accelerators"

Similar presentations


Ads by Google