Presentation is loading. Please wait.

Presentation is loading. Please wait.

Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.

Similar presentations


Presentation on theme: "Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D."— Presentation transcript:

1 Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D  Sensitivity simulations  Location choice  Schedule  Current status and roadmap of  -projects  Conclusion SuperNEMO: next generation project to search for neutrinoless double beta decay 1/25

2 Neutrino Ettore Majorana Observatory NEMO-3/SuperNEMO collaboration ~ 80 physicists, 12 countries, 27 laboratories. R&D Program for 02/2006- 07/2009 is being carring out. Major contributors: UK, France, Spain. Smaller but vital contributions from US, Russia, Czech Republic, Japan. USA MHC INL U Texas Japan U Saga U Osaka France CEN Bordeaux IReS Strasbourg LAL ORSAY LPC Caen LSCE Gif/Yvette UK UCL U Manchester Imperial College Finland U Jyvaskyla Russia JINR Dubna ITEP Moscow Kurchatov Institute Ukraine INR Kiev ISMA Kharkov Czech Republic Charles U Praha IEAP CTU Praha Morocco Fes U Slovakia (U. Bratislava) Spain U Valencia U Saragossa U Barcelona Poland U Warsaw (Neutrino Experiment on MOlybdenum – historical name) 2/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

3 NEMO-3SuperNEMO T 1/2 (  ) > 2. 10 24 y < 0.3 – 1.3 eV T 1/2 (  ) > 2. 10 26 y < 40 – 100 meV Sensitivity 7 kg 100 Mo T 1/2 (  ) = 7. 10 18 y 100-200 kg 82 Se|| 150 Nd T 1/2 (  ) = 10 20 || 10 19 y Mass of isotope Energy resolution (FWHM of the  ray) FWHM ~ 12% at 3 MeV (dominated by calorimeter ~ 8%) Total: FWHM ≤7 % at 1 MeV Calorimeter: ≤4 % at 3 MeV Efficiency  (  ) = 18 %  (  ) ~ 30 % Internal contaminations in the source foils in 208 Tl and 214 Bi 214 Bi < 300  Bq/kg 208 Tl <   Bq/kg (If 82 Se) 214 Bi < 10  Bq/kg 208 Tl <   Bq/kg Background  ~ 2 cts / 7 kg / y ( 208 Tl, 214 Bi) ~ 0.5 cnts/7 kg/y  =1, 208 Tl =0.5 214 Bi=0.5 cnts/100 kg/y From NEMO to SuperNEMO T 1/2 (  ) > ln 2  M  e  T obs N 90 N A A  NEMO-3 successful experience shows us that technique can be extrapolated for larger mass next generation detector to reach new sensitivity level. 3/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

4 Plane geometry Top view Side view Source (40 mg/cm 2 ) 12m 2, tracking volume (~3000 channels) and calorimeter (~1000 PMT) Modular (~5 kg of enriched isotope/module) 5 m 1 m 4 m 100 kg: 20 modules ~ 60 000 channels for drift chamber ~ 12 000/20 000 channels for 5’’/8’’ PMT SuperNEMO basic design 4 m 4/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

5 Shell Model: Caurier et al. (2004)&private com. QRPA Simkovic et al. (1999) Stoica et al. (2001) Suhonen et al. (1998 and 2003) Rodin, Simkovic (2005) Recent calculations: Uncertainties in nuclear matrix elements (NME) theoretical calculations – essential problem Nucleus choice depends on:  enrichment possibilities  experimental techniques  NME value (not very strong due to calculation uncertainties)  Q  values (phase space factor, background)  high  life-time Choise of nucleus for measurements 5/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

6 a)Compilation of QRPA & Shell model (MEDEX'07 workshop) b)Shell model only c)Deformation is not taken into account NucleusQ  (keV) T 1/2 (  ), y G , 10 -14 y -1 √ G  /G  76Ge M   a) Abundance(%) 48 Ca42724.2·10 19 6.433.190.76 b) 0.187 76 Ge20391.74·10 21 0.6312.58-6.367.4 82 Se29969.2·10 19 2.732.082.49-4.609.2 96 Zr33502·10 19 5.73.001.12-4.322.8 100 Mo30347.11·10 18 4.582.702.78-4.859.6 116 Cd28053.1·10 19 4.682.731.96-4.937.5 128 Te8672.5·10 24 (geo)0.170.522.54-5.8432 130 Te25297.6·10 20 4.142.562.34-5.4434.5 136 Xe2468-4.372.631.26-3.729 150 Nd33679·10 18 13.44.614.16-4.74 c) 5.6 Choise of nucleus for measurements Two main options: 82 Se and 150 Nd. 82 Se obtained by centrifugation. Impossible for 150 Nd, only laser enrichment 6/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

7 Chemical purification at INL (US) Purification Goal: 208 Tl < 2  Bq/kg 214 Bi < 10  Bq/kg - 600 g of nat Se done -1 kg 82 Se done All funded by ILIAS  Collaboration with INL (chemical method) Installation of NEMO3 foils (LSM) Source foils production Goal: 250 m 2 of 82 Se foils of 40 mg/cm 2 NEMO3: ITEP (Moscow) powder + glue (60mg/cm 2 ) =>Extrapolation 100 kg possible if very clean conditions. Or new technique is in test in LAL Enrichment Goal: To be able to produce 100 kg of 82 Se - 30 kg of 76 Ge for GERDA - 100 kg of 82 Se possible in 3 years - Distillation of 82 Se (for purification) possible Distillation of 116 Cd tested with NEMO-3 - 3.5 kg of 82 Se funded by ILIAS ( * ) (2005-2007)  Facilities exist in Russia -1 kg (ITEP, done&checked) + 2 kg of nat Se done  ITEP; Collaboration with Kurchatov and Nizhnij-Novgorod institutes (distillation) R&D for 82 Se sources ECP (Electro-Chemical Plant, Svetlana) Zelenogorsk (Siberia) 7/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

8  technically it is potencially possible to enrich Nd (MENPHIS/CEA), strongly supported by the international double beta decay community  150 Nd advantages - no constraint for Radon and 214 Bi - constraint less severe for 208 Tl - phase space: 100 kg 150 Nd  1 700 kg of 76 Ge  400 kg of 82 Se or 130 Te  4000 kg of 136 Xe - nuclear matrix element : could be good but ? - if SUSY is a mediator : very good for Nd - search to  -transition to excited state level very promising too  Nd is the candidate for SuperNEMO (2 electrons search) and for SNO++ (pure calorimeter) R&D for 150 Nd 8/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

9 Evaporator Dye laser chain Yag laser Copper vapor laser Production of 200 kg of enriched U at 2.5 % in few days Results in agreement with simulation expectation Design : 2001 Building : 2002 1 st test : early 2003 1 st full scale exp. : june 2003 MENPHIS simulation shows that enrichment of 150 Nd is doable (ton scale), ~ 100 kg 48 Ca enrichment is theoriticaly doable. Studies must be done Expression of Interest of SuperNEMO, SNO++ to keep MENPHYS for Nd enrichment 150 Nd R&D: MENPHIS facility support Based on AVLIS (Atomic Vapor Laser Isotope Separation) method of enrichement 9/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

10 Calorimeter R&D Energy resolution is a combination of energy losses in foil and calorimeter  E/E Goal: 7-8%/√E  4% at 3 MeV ( 82 Se Q  ) Studies: –Material: organic plastic (PS) or liquid (LS) scintillators –Geometry and shape (block, bar) –Size –Reflective coating –PMT High QE Ultra-low background Factor of 2 compared to NEMO3! BC404 PS in teflon Hamamatsu high-QE PMT 207 Bi source D E/E = 6.5% at 1 MeV  3.8% at 3 MeV Required resolution achieved for small ~5-6 cm samples for both LS and PS scintillators. Bicron is best so far but other manufacturers competing (ISM, Kharkov, Dubna) Real challenge starts from scintillators with ~10 x 10 cm surface size. Cuvette with LS 10/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

11 Calorimeter R&D Focus on large block studies (~20cm, 8” PMT) Four routes pursued – 8” PMT + plastic block – 8” PMT + liquid scintillator – 8” PMT + hybrid (liquid + plastic) scintillator – 2m scint. bar with 3” or 5” PMTs PMTs –Working closely with manufacturers: Hamamatsu, Photonis, ETL –Real breakthrough in high-QE PMTs from Hamamatsu and Photonis: 43% QE –First large (8”) high-QE Hamamatsu PMT is under test –Deep involvement in ultra-low background PMT development (especially Photonis) Enhanced reflectors available. 98% reflectivity instead of usual 93% First tests with high-QE 8’’ PMT are encouraging: 8%-8/5% for LS/PS with 15-20 cm. Further intensive tests are in progress. Plan B: 3”/5” high QE PMTs and larger number of channels. Decision on calorimeter design in December 2008. 8” High-QE Hamamatsu PMT 11/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

12 SC bars double sided with PM. Only ~ 3000 relatively cheap (3’’||5’’) PM (~12000 8’’ PM in basic design). More compact, less background from PM, but worse resolution (~10-11%). Simulations are in progress. Alternative SuperNEMO sandwich bar design 12 m 11 m 12/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

13 R&D for bar scintillators 11-12% resolution has been obtained without optimization New tests with improved setup are in progress. 13/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

14 Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month   (164  s)   (300 ns) 232 Th 212 Bi (60.5 mn) 208 Tl (3.1 mn) 212 Po 208 Pb (stable) 36% 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb 22.3 y 0.021% Bi-Po Process Q  ( 212 Bi) = 2.2 MeV ee e  prompt  T 1/2 ~ 300 ns E deposited ~ 1 MeV Delay  Low background measurement R&D: BiPo detection method To measure contaminations of 208 Tl and 214 Bi in source foils before installation in SuperNEMO Goal: ~5kg of foil (12m 2, 40mg/cm 2 ) in one month with a sensitivity of – 208 Tl < 2  Bq/kg – 214 Bi < 10  Bq/kg (e.g. sensitivity limit of “standard” 400cm 3 HPGe detector 60  Bq/kg in 208 Tl and 200  Bq/kg in 214 Bi for 1 month) 14/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

15 BiPo-1 capsule BiPo-1: 10 capsules in operation since 12/2007, current sensitivity < 7.5 µBq/10m 2 x 40 mg foil BiPo-2 and Phoswhich: started in 04/2008: results expected in the end of 2008 BiPo-2 Low background measurement R&D: BiPo prototypes BiPo-1 capsule Set of BiPo-1 capsules 15/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

16 Drift cell worked in Geiger mode Goal: tracker performance optimization sizes of wires and cell (  3-5 cm) wire material, gas mixture, readout simulation for optimal tracker desing desing of automatic wiring equipment R&D for tracker 9-cell prototype (in photo) has been built and tested with cosmics in Manchester University: - perfomances are ok, optimized for autowiring; - different configurations (8-12 cathod wires per cell) have been tested. 3cm, 4.4 cm and 5cm cells have been tested with different setups using laser. Preliminary results show the close performances. 90-cell prototype (below) is in production and will be ready this summer. final choise of SuperNEMO tracker: 12/2008. - Transverse position from electron drift times - Longitudinal position from plasma propagation times Revised 90-cell prototype 16/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

17 R&D for wiring robot 17/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

18 82 Se 150 Nd “Conservative” scenario 82 Se: T 1/2 ( 0n ) =1-1.5 10 26 y depending on final mass, background and efficiency  0.06 – 0.1 eV (includes uncertainty in T 1/2 ) – MEDEX’07 NME 150 Nd: T 1/2 ( 0n ) =0.5 10 26 y  0.045 eV (but deformation not taken into account) Sensitivity Simulations 18/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

19 Possible SuperNEMO location cites

20 Main Hall 40 x 15 m (h=11 m) RAILWAY TUNNEL ROAD TUNNEL Ultra-Low background Facility 15 x 10 m (h=8 m) Old Laboratory 20 x 5 m (h=4.5 m) installations, clean rooms & offices Access gallery Characteristic of the new LSC Depth900 m (2450 mwe) Main experiment al hall 600 m 2 (oriented to CERN) Low background lab 150 m 2 Clean room45 m 2 (100/1000 type) General services 135 m 2 Offices80 m 2 -BiPo -SuperNEMO -- Dark matter -- …. New LSC Canfranc laboratory 20/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

21 Could be available for 2012 Future extension of LSM laboratory 21/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

22 SuperNEMO Design Study Schedule Summary 200720082009 20102011 20122013 NEMO3 Running Running full detector in 2014 Target sensitivity (0.05-0.1 eV) in 2016 construction of 20 modules SuperNEMO modules installation at new LSM Preparation of new LSM site BiPoinstallation BiPo1Canfranc/LSMBiPoconstruction BiPo running @ Canfranc 1-5 SuperNEMO modules running at Canfranc running at Canfranc SuperNEMO 1 st module construction 2014 SuperNEMO schedule summary 22/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

23 ExperimentIsotopekgT 1/2 yr, 90% CLm *, meV Start-up timescale Status HM 76 Ge15>1.9 10 25 230-5601990finished KDHK claim 76 Ge15 (0.7-4.2) 10 25 (3  ) 150-9201990finished NEMO 3 100 Mo72 10 24 (expect. 2009) 340-5902003running CUORICINO 130 Te11>3 10 24 (current) 260-6102002running CUORE 130 Te2101.3 10 26 40-922011approved GERDA, Phase I 76 Ge153 10 25 180-4402009approved Phase II 76 Ge~312 10 26 70-1702011approved EXO 200 136 Xe1606.4 10 25 270-3802008approved EXO 1t 136 Xe8002 10 27 50-682015R&D SuperNEMO 82 Se/ 150 Nd 100+(1-2) 10 26 45-1002011R&D COBRA 116 Cd1511.5 10 26 38-96?R&D MOON II 100 Mo1203.5 10 26 26-45?R&D * Matrix elements from MEDEX’07 or provided by experiments 0nbb experiments overview World-wide double beta-decay projects 23/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

24 HM Claim NEMO 3 CUORICINO, EXO-200 GERDA SuperNEMO CUORE,EXO 2015-2020, 1t experiments (1 or 2) >2020, >10t experiment Roadmap for double beta-decay projects 24/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

25 - The 0  decay is a test of physics beyond the Standard Model by the search of the leptonic number violation and would determine the nature of the neutrino (Majorana), absolute neutrino mass scale and neutrino hierarchy. - Several experiments are needed to measure different sources with several techniques. - NEMO-3 technique can be extrapolated at ~100 kg to be sensitive to 2.10 26 y Only tracko-calo (SuperNEMO) and gas TPC can directly register  -decay. In the case of discovery only direct methods will allow to determine the process leading to  : light neutrino exchange, right-handed current, supersymmetry, etc. - 3-year SuperNEMO R&D program is carrying out and it is in good shape. Key challenges are calorimeter resolution, isotope choice, and radio purity. Based on design study results full proposal for 100+ kg detector in 2009. “Last minute” isotope change possible. E.g. CUORE sees the signal in 130 Te. -First module 2010/11 -All 20 modules ~2013 Target sensitivity: 50-100 meV by 2016, which is competitive with the other next generation  -experiments. - The next generation of bb(0n) detectors will improve by a factor of 100/10 the sensitivity to T1/2 / respectively. Conclusion 25/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008


Download ppt "Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D."

Similar presentations


Ads by Google