Presentation is loading. Please wait.

Presentation is loading. Please wait.

Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.

Similar presentations


Presentation on theme: "Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics."— Presentation transcript:

1 Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics Czech Technical University in Prague NOW 2008, 6 – 13 September 2008, Conca Specchiulla, Italy

2  Brief introduction –  decay  NEMO 3 – description and results  SuperNEMO – current status  Summary Outline Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

3 In even-even nuclei where single   decay is highly suppressed or forbidden but     decay is possible, e.g. 48 Ca, 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, 130 Te, 136 Xe, 150 Nd,… 100 Mo 0+0+ 21+21+ 01+01+ 41+41+ 0+0+ 100 Ru 22+22+ 3034 keV 100 Tc 1+1+ Double beta decay  2 = (T 1/2 ) -1 = G 2 (Q  11,Z) |M 2 | 2 G 2 – phase space factor M – nuclear matrix element Two-neutrino  decay (2  ): (A,Z)  →  (A,Z+2) + 2 e  + 2 e Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Neutrinoless  decay (0  ): (A,Z)  →  (A,Z+2) + 2 e   0 = (T 1/2 ) -1 = G 0 (Q  5,Z) |M 0 | 2  m  2 G 0 – phase space factor M – nuclear matrix element  m  = |  j |U e j | 2 e i  j m j | – effective neutrino mass Energy sum of the electrons Beyond SM  L = 2, Majorana neutrinos  with mass > 0 Can be due to: light neutrino exchange  m , right-handed currents, Majorana emission, SUSY particle exchange

4 Calorimetry plus tracking Detection of both electrons: reject unknown nuclear gamma lines Three kinematic observables: study underlying physics mechanism (i) individual electron energies (ii) angular correlation (iii) energy sum Sources separated from the detector: measure T 1/2 for several isotopes Background rejection through particle identification: e –, e +, ,  particles Unique and complementary NEMO experimental approach Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

5 Modane Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Detector located in the LSM Modane underground laboratory, France (4800 m.w.e.) Source: 10 kg of  isotopes, cylindrical, S = 20 m 2, foils ~ 60mg/cm 2 Tracking detector: drift wire chamber operating in Geiger mode (6180 cells) gas = 94% He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs NEMO 3 detector NEMO = Neutrino Ettore Majorana Observatory B (25 G) 4 m 20 sectors 3 m 6 m Magnetic field: 25 Gauss Gamma shield: pure iron (18 cm layer) Neutron shield: borated water (ext. wall, 30 cm layer) & wood (top and bottom, 40 cm layer) Surrounded by an anti-radon tent supplied with Rn-free air from an anti-radon factory identification of e –, e +,  and  -particles

6 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV 48 Ca 7.0 g Q  = 4272 keV 130 Te 454 g Q  = 2529 keV nat Te 491 g Cu 621 g 2  decay measurement External background measurement 100 Mo 6.914 kg Q  = 3034 keV 0  decay search 82 Se 0.932 kg Q  = 2995 keV & NEMO 3 sources All sources produced by centrifugation in Russia Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

7 Deposited energy: E 1 + E 2 = 2088 keV Internal hypothesis: (  t) mes – (  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm (  vertex) // = 5.7 mm Run Number: 2040 Event Number: 9732 Date: 2003-03-20 100 Mo foils Scintillator + PMT Longitudinal view Transverse view Vertex of the e  e  emission  event reconstruction Criteria to select  events: 2 tracks with charge < 0 2 PMTs, each > 200 keV PMT-Track association Common vertex Internal hypothesis TOF (external event rejection) No other isolated PMT (  rejection) No delayed  track ( 214 Bi rejection) Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

8 Results for 2  of 130 Te Preliminary result: 130 Te:T 1/2 = [ 7.6 ± 1.5 (stat) ± 0.8 (syst) ]  10 20 y Preliminary result: 130 Te:T 1/2 = [ 7.6 ± 1.5 (stat) ± 0.8 (syst) ]  10 20 y S + B = 607 events 109 events 454 g 534 days S/B = 0.25 background subtracted NEMO-3 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Energy sum of the electrons

9 Cut at 1.5 MeV E 1 + E 2 (MeV) Preliminary results: T 1/2 (2  ) = [4.4 +0.5 -0.4 (stat) ± 0.4 (syst)] × 10 19 y T 1/2 (0  ) > 1.3 × 10 22 y (90% C.L.)  m  < 29.6 eV (90% C.L.), eff. 22% Preliminary results: T 1/2 (2  ) = [4.4 +0.5 -0.4 (stat) ± 0.4 (syst)] × 10 19 y T 1/2 (0  ) > 1.3 × 10 22 y (90% C.L.)  m  < 29.6 eV (90% C.L.), eff. 22% 133 events 7g 948 days S/B = 6.76 NEMO-3 New results for 48 Ca Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 NEMO-3 Angular distribution High bkg here due to contamination with 90 Sr Energy sum of the electrons Cut at 0 NME: E. Caurrier et al., Phys. Rev. Lett. 100 (2008) 052503.

10 New results for 96 Zr Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315. [3] F.Šimkovic et al., Phys.Rev. C 77 (2008) 045503. NME: 9.4 g 925 days S/B = 1 NEMO-3 Angular distribution Energy sum of the electrons Preliminary results: T 1/2 (2  ) = [2.3 ± 0.2(stat) ± 0.3 (syst)] × 10 19 y T 1/2 (0  ) > 8.6 × 10 22 y (90% C.L.)  m  < (7.4 – 20.1) eV [1–3] Preliminary results: T 1/2 (2  ) = [2.3 ± 0.2(stat) ± 0.3 (syst)] × 10 19 y T 1/2 (0  ) > 8.6 × 10 22 y (90% C.L.)  m  < (7.4 – 20.1) eV [1–3]

11 New results for 2  of 150 Nd Preliminary result: 150 Nd:T 1/2 = [ 7.20 +0.25 -0.22 (stat) ± 0.73 (syst) ]  10 18 y Preliminary result: 150 Nd:T 1/2 = [ 7.20 +0.25 -0.22 (stat) ± 0.73 (syst) ]  10 18 y Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Angular distributionEnergy sum of the electrons

12 0  results for 150 Nd 2  bkg + radioactive bkg MC radioactive bkg MC 0  MC (T 1/2 = 1.45×10 22 y) 150 Nd Above 2.5 MeV 28.6 ± 2.7 events expected from background 29 events observed Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Light neutrino exchange: LEP CLs statistical method above 2.5 MeV Detection efficiency: 19% NME: V.A. Rodin et al., Nucl. Phys. A 766 (2006) 107. Previous result: T 1/2 > 1.7 × 10 21 y (90% CL) A.A. Klimenko et al., Nucl. Instr. Meth. B 17 (1986) 445. Right-handed currents: Emission of Majoron (M1): T 1/2 (0  ) > 1.45 × 10 22 y (90% CL)  m  < 3.7 – 5.1 eV T 1/2 (0  ) > 1.45 × 10 22 y (90% CL)  m  < 3.7 – 5.1 eV T 1/2 (0  ) > 1.27 × 10 22 y (90% CL) T 1/2 (0  ) > 1.55 × 10 21 y (90% CL)

13 [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315. [3] V.A.Rodin et al., Nucl.Phys. A 793 (2007) 213. NME: Results for 100 Mo and 82 Se 693 days of data, Phase I + Phase II (data until spring 2006) Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 NEMO-3 100 Mo NEMO-3 82 Se T 1/2 (2  ) = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  10 18 y (Phys. Rev. Lett. 95 (2005) 182302) T 1/2 (0  ) > 5.8 × 10 23 y (90% CL)  m  < (0.8 – 1.3) eV [1–3] T 1/2 (2  ) = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  10 18 y (Phys. Rev. Lett. 95 (2005) 182302) T 1/2 (0  ) > 5.8 × 10 23 y (90% CL)  m  < (0.8 – 1.3) eV [1–3] T 1/2 (2  ) = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  10 19 y (Phys. Rev. Lett. 95 (2005) 182302) T 1/2 (0  ) > 2.1 × 10 23 y (90% CL)  m  < (1.4 – 2.2) eV [1–3] T 1/2 (2  ) = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  10 19 y (Phys. Rev. Lett. 95 (2005) 182302) T 1/2 (0  ) > 2.1 × 10 23 y (90% CL)  m  < (1.4 – 2.2) eV [1–3]

14 0  decay search expected sensitivities in 2010: 100 Mo T 1/2 (0  ) > 2 × 10 24 y (90 % CL)  m  < (0.4 – 0.7) eV 82 Se T 1/2 (0  ) > 8 × 10 23 y (90 % CL)  m  < (0.7 – 1.1) eV Collaboration decided to perform blind analysis Analysis is now under way Results will be ready soon Data acquisition with NEMO 3 until the end of 2010 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R). [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315. [3] V.A.Rodin et al., Nucl.Phys. A 793 (2007) 213. NME:

15 From NEMO 3 to SuperNEMO N 90 A T 1/2 (0  ) > ln 2  M    T obs NA NA  AN excluded Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 7 kg 100 – 200 kg isotope mass M 8 % ~ 30 % isotope 100 Mo 150 Nd or 82 Se NEMO 3SuperNEMO internal contamination 208 Tl and 214 Bi in the  foil A( 208 Tl): < 20  Bq/kg A( 214 Bi): < 300  Bq/kg A( 208 Tl) < 2  Bq/kg if 82 Se: A( 214 Bi) < 10  Bq/kg T 1/2 (0  ) > 2 × 10 24 y  m  < (0.3 – 0.6) eV T 1/2 (0  ) > 2 × 10 26 y  m  < (50 – 100) meV energy resolution (FWHM) 8% @ 3 MeV4% @ 3 MeV efficiency 

16 SuperNEMO Collaboration ~ 90 physicists, 12 countries, 27 laboratories Morocco Fes U United Kingdom UCL U Manchester Imperial College France CEN Bordeaux IPHC Strasbourg LAL ORSAY LPC Caen LSCE Gif s/Yvette Spain U Valencia U Zaragoza U Barcelona USA MHC INL (U Texas) Russia JINR Dubna ITEP Moscow Kurchatov Institute Japan U Saga KEK U Osaka Slovakia (U Bratislava) Ukraine INR Kiev ISMA Kharkov Czech Republic Charles U Prague CTU Prague Poland U Warszawa Finland U Jyväskylä Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

17 SuperNEMO preliminary design Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Planar geometry Source (40 mg/cm 2 ) 12 m 2, tracking volume (~ 3000 channels) and calorimeter (~ 1000 PMT) Modular (~ 5 kg of enriched isotope/module) 100 kg: 20 modules ~ 60 000 channels for drift chamber ~ 20 000 PMT channels (3000 if bar design) Top view 5 m 1 m Side view 4 m

18 February 2006 – July 2009 Approved in UK, France and Spain. Smaller but vital contributions from USA, Russia, Czech Republic, Japan. Main tasks and deliverables: –R&D on critical components Calorimeter energy resolution of 4% at 3 MeV Optimisation of tracking detector and construction (robot) Better background rejection (e.g. extra veto counters) Ultrapure source production and purity control Simulations and geometry optimisation (B-field question) –Technical Design Report –Experimental site selection (Modane, Canfranc, Gran Sasso) SuperNEMO design study Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

19 Choice of isotope Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Choice of nucleus depends on: enrichment possibilities high Q  value phase space factor G 0 2  half-life purification of 4 kg of 82 Se underway (INL, USA) enrichment of 150 Nd possible in France (MENPHIS facility at CEA – Atomic Vapour Laser Isotope Separation) = G  M   m  2 2 T 0 1 Two main options: 150 Nd 82 Se Q  (MeV) 3.367 2.995 G 0 (y -1 eV -2 ) 8×10 -25 10 -25 82 Se obtained by centrifugation. Impossible for 150 Nd, only laser enrichment.

20 Calorimeter R&D Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Energy resolution is a combination of energy losses in the foil and calorimeter  E/E Goal: FWHM  7%/  E  4% at 3 MeV Studies – Material: organic (plastic or liquid) – Geometry and shape (block or bar) – Size – Reflective coating – PMTs (Photonis, Hamamatsu, ETL) High QE Ultra-low background

21 Calorimeter R&D status Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Focus on large block studies (~ 20 cm, 8” PMT) Four routes pursued – 8” PMT + plastic block – 8” PMT + liquid scintillator – 8” PMT + hybrid (liquid + plastic) scintillator – 2 m scintillator bar with 3” or 5” PMTs PMTs – Working closely with manufacturers: Hamamatsu, Photonis, ETL – Real breakthrough in high-QE PMTs from Hamamatsu, Photonis: 43% QE from 3’’ PMTs, now working on 8’’ – Deep involvement in ultra-low background PMT development (especially Photonis) 8% at 1 MeV achieved with 20 cm blocks, standard PMT (27% QE) and reflectors Extrapolating the above improvements gives 7% but must be tested once all components are in hand Plan B: 3”/5” high QE PMTs and larger number of channels Decision on calorimeter design in December 2008

22 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Optimise operating parameters: – wire length and diameter – wire material, gas mixture – readout Several single cells, two 9-cell prototypes built and tested 90-cell prototype is being built 9-cell prototype in Manchester Tracker R&D Drift cell working in Geiger mode (Geiger cell) ■ Transverse position from electron drift times ■ Longitudinal position from plasma propagation times

23 Tracker automated wiring Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 About 500 000 wires to be strung, crimped, terminated Wiring robot is being developed at Mullard Space Science Lab (UCL) Pair of end fittings Anode wire feed mechanism Clamp mechanism

24 Radiopurity measurement Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Tracking (wire chamber) Scintillator + PMT Source foil to be measured e–e–  Prompt e –, T 0 Delayed  T 1/2 ~ 300 ns, E deposited ~ 1 MeV Radon + neutron +  shield BiPo detector to measure contaminations of 208 Tl and 214 Bi in source foils before installation in SuperNEMO Goal: ~ 5 kg of foil (12 m 2, 40 mg/cm 2 ) in one month with a sensitivity of A( 208 Tl) < 2  Bq/kg & A( 214 Bi) < 10  Bq/kg Background < 1 event/month!   (164  s)   (300 ns) 232 Th 212 Bi (60.5 mn) 208 Tl (3.1 mn) 212 Po 208 Pb (stable) 36% 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb 22.3 y 0.021% Bi-Po process

25 BiPo-1 capsule BiPo-1 capsule BiPo-1: 18 capsules in operation in LSM Modane since February 2008 current sensitivity A( 208 Tl) < 5 µBq/kg BiPo-2 and Phoswhich: installed in LSM Modane and running since July 2008 results expected by the end of 2008 BiPo-2 Set of BiPo-1 capsules Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Radiopurity measurement

26 2007200820092010201120122013 NEMO 3 running Running full detector in 2014 Target sensitivity (0.05 – 0.1 eV) in 2016 Construction of 20 modules SuperNEMO modules installation at new LSM BiPo installation BiPo running @ Canfranc 1 – 5 SuperNEMO modules running at Canfranc 2014 SuperNEMO schedule Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 BiPo1 Canfranc/LSM BiPo construction Construction of 20 modules Preparation of new LSM site SuperNEMO 1 st module construction SuperNEMO design study

27 Summary NEMO 3  Unique approach combining tracking and calorimetry  2  factory  precise T 1/2 measurement for 7 isotopes: new results for 48 Ca, 96 Zr, 130 Te and 150 Nd  0  of 100 Mo & 82 Se: blind analysis of Phase 2 data under way  Data taking until the end of 2010  Ideal test bench for SuperNEMO SuperNEMO  3 year design study addresses most critical issues: calorimeter resolution, tracker optimisation, radio-purity  Based on design study results full proposal for 100+ kg detector in 2009  Start-up in stages due to modular approach: first module by 2010/11, all 20 modules ~ 2013  Target sensitivity 50 – 100 meV by 2016 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

28 Backup slides Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

29  isotope foils scintillators PMT calibration tube cathode rings (wire chamber) iron shielding coil water tank Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

30 1 ton of charcoal @ –50 o C, 9 bars air flux = 150 m 3 /h Input: A( 222 Rn) 15 Bq/m 3 Output: A( 222 Rn) < 15 mBq/m 3 !!! reduction factor of 1000 Phase I : February 2003 – September 2004 (radon background in data) ~ 1 0 -like event/y/kg with 2.8 < E 1 +E 2 < 3.2 MeV Radon background for 0  search is then negligible for Phase 2 Radon background for 0  search is then negligible for Phase 2 Radon trapping facility Inside the NEMO 3 tent: factor of 100 – 300 Inside NEMO 3: factor of 10 A( 222 Rn)  2 mBq/m 3 Phase II : since October 2004 (radon level reduced by a factor of 10)   (164  s) 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb (22.3 y) 0.021% Bi-Po process 0.015 Bq/m 3 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

31 T 1/2 = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  10 18 y Phys. Rev. Lett. 95 (2005) 182302 T 1/2 = [ 7.11 ± 0.02 (stat) ± 0.54 (syst) ]  10 18 y Phys. Rev. Lett. 95 (2005) 182302 219 000 events 6914 g 389 days S/B = 40 cos(  ee ) ● Data 2 MC simulation Background subtracted Angular distribution ● Data 2 MC simulation Background subtracted 219 000 events 6914 g 389 days S/B = 40 E 1 + E 2 (MeV) Energy sum of the electrons Phase I data (February 2003 – October 2004) with radon 2  decay of 100 Mo Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 Now we have 0.5M events and the result will be updated later this year NEMO-3

32 T 1/2 = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  10 19 y Phys. Rev. Lett. 95 (2005) 182302 T 1/2 = [ 9.6 ± 0.3 (stat) ± 1.0 (syst) ]  10 19 y Phys. Rev. Lett. 95 (2005) 182302 2750 events 932 g 389 days S/B = 4 ● Data 2 MC simulation Background subtracted E 1 + E 2 (MeV) Phase I data (February 2003 – October 2004) with radon 2  decay of 82 Se Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 NEMO-3 Energy sum of the electrons

33 External background 208 Tl (PMTs) Measured with (e   ) external events ~ 10 -3 0  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV ~ 0.1 0  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV 208 Tl impurities inside the foils Measured with (e  2  ), (e  3  ) events coming from the foil External neutrons and high energy  ’s Measured with (e  e  ) int events with E 1 +E 2 > 4 MeV  0.02 0  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV NEMO 3 can measure each component of its background! 100 Mo 2  decay T 1/2 = 7.1 × 10 18 y ~ 0.3 0  -like events y -1 ·kg -1 with 2.8<E 1 + E 2 <3.2 MeV Background measurement in NEMO 3 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

34 Future extension of LSM Modane lab Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

35 Main Hall 40 × 15 m (h=11 m) RAILWAY TUNNEL ROAD TUNNEL Ultra-Low background Facility 15 × 10 m (h=8 m) Old Laboratory 20 × 5 m (h=4.5 m) installations, clean rooms & offices Access gallery Characteristic of the new LSC Depth900 m (2450 mwe) Main experimental hall 600 m 2 (oriented to CERN) Low background lab 150 m 2 Clean room45 m 2 (100/1000 type) General services 135 m 2 Offices80 m 2 - BiPo - SuperNEMO - Dark matter - … New LSC Canfranc laboratory Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008

36 150 Nd laser enrichment Vaporised isotope mixture Laser beam Enriched U collecting plate Depleted U collecting plate AVLIS: Atomic Vapour Laser Isotope Separation Selective photo-ionisation: based on isotope shifts in the atomic absorption optical spectra U + 3 selective photons → 235 U + + e – 150 Nd enrichment is technically possible MENPHIS facility (CEA/Pierrelatte - France)

37 Ladislav Vála, Results of NEMO 3 and status of SuperNEMO, NOW 2008, 9 th September 2008 200+ kg of 2.5% enriched Uranium produced MENPHIS AVLIS facility Facility stopped in 2003 Principal agreement by CEA to suspend closure/dismantling 150 Nd enrichment collaboration formed. SuperNEMO and SNO++ plus other interested parties Phased approach –Feasibility studies for high degree enrichment (> 50%) –~ kg production and tests –100+ kg production


Download ppt "Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics."

Similar presentations


Ads by Google