Presentation is loading. Please wait.

Presentation is loading. Please wait.

Www.helsinki.fi/yliopisto Antti Meriläinen 1, Ivan Kassamakov 1,2, Kenneth Österberg 1,2 and Edward Hæggström 1 1) Department of Physics, University of.

Similar presentations


Presentation on theme: "Www.helsinki.fi/yliopisto Antti Meriläinen 1, Ivan Kassamakov 1,2, Kenneth Österberg 1,2 and Edward Hæggström 1 1) Department of Physics, University of."— Presentation transcript:

1 www.helsinki.fi/yliopisto Antti Meriläinen 1, Ivan Kassamakov 1,2, Kenneth Österberg 1,2 and Edward Hæggström 1 1) Department of Physics, University of Helsinki 2) Helsinki Institute of Physics Rapid Ultralow Pressure Manometry by Light Absorption Spectroscopy 4.2.20141 of 10

2 www.helsinki.fi/yliopisto Motivation CLIC main beam vacuum requirements from beam dynamics: H 2 0, CO, CO 2 partial pressures < 3*10  9 mbar The RF causes outgassing in CLIC accelerator structures mainly to two mechanism: breakdown and dark current Expected pressure rise from simulations: several orders of magnitude on  100 ns time scale. To be verified experimentally. Aim: develop method to measure partial pressure changes of ~10  8 mbar on ~100 ns time scale at a RF test stand (”Xbox”). For the moment focusing on absorption spectroscopy and Cu. 4.2.20142 of 10

3 www.helsinki.fi/yliopisto Test setup Quartz crystal microbalance (QCM) as reference l = 5 ± 0.5 cm R = 25 mm R QCM = 6.5 mm 4.2.20143 of 10 Photo multiplier tube (PMT)

4 www.helsinki.fi/yliopisto Simulated Visualization QCM CU source 4.2.20144 of 10

5 www.helsinki.fi/yliopisto Setup inside vacuum QCM Cu vapour source: Cu wire around W wire 1 cm 1 mm l = 5 ± 0.5 cm 4.2.20145 of 10

6 www.helsinki.fi/yliopisto Results Measurement 1Measurement 2 Sample rate: 100 ks/s 6 kHz low pass filter for PMT 1 Hz low pass filter for QCM Change in intensity ~5% ≈ 2 * 10 11 absorbances ≈ 10 -4 mbar 4.2.20146 of 10

7 www.helsinki.fi/yliopisto4.2.20147 of 10 Calibration (Relate intensity change to number of atoms) Cu- source QCM → ΔM → N 1 Light beam Δ I N 2

8 www.helsinki.fi/yliopisto Progress t – dP – P Diagram Target Measurement 1 & 2 Faster PMT 1 ng/s = 10 13 Cu atoms/s ≈ 5∙10 -5 mbar 4.2.20148 of 10

9 www.helsinki.fi/yliopisto Achieved: Measured few ng/s Cu at 10 -5 mbar base pressure Challenges: Faster response time Absolute calibration Interpretation of measurement: Can one atom have multiple absorptions? Conclusion 4.2.20149 of 10

10 www.helsinki.fi/yliopisto Thank You! Questions and Comments 4.2.201410 of 10

11 www.helsinki.fi/yliopisto Light Source Setup & Cross section dimension QCM Cu source R Light = 25 mm R QCM = 6.5 mm l = 5 ± 0.5 cm Photo multiplier tube (PMT) 4.2.201411

12 www.helsinki.fi/yliopisto Absorption spectroscopy - 324.8 nm and 327.4 nm wavelengths are strongly absorbed in copper vapor - Light source must be stable - Copper hollow cathode lamp is suitable low cost light source - Light intensity changes is measured with Photomultiplier tube (PMT), bandwidth 20 kHz 4.2.201412

13 www.helsinki.fi/yliopisto Beer-Lamberts law (Light absorbtion in copper vapour) Cross section for 324.8 nm and 327.4 nm wavelengths Emitted intensity of 324.8 nm and 327.4 nm wavelengths length of light beam in Cu vapor number of absorbing Cu atoms Current operation area (Signal > |Noise| ) I = 90% - 10% lN = 4.9 * 10 11 - 1.2 * 10 13 Absorbances/meter Operation point sensitivity: 9 * 10 11 Absorbances/meter 4.2.201413


Download ppt "Www.helsinki.fi/yliopisto Antti Meriläinen 1, Ivan Kassamakov 1,2, Kenneth Österberg 1,2 and Edward Hæggström 1 1) Department of Physics, University of."

Similar presentations


Ads by Google