Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modern Optics PHY485F/1485F Robin Marjoribanks McLennan Physics 1104C

Similar presentations


Presentation on theme: "Modern Optics PHY485F/1485F Robin Marjoribanks McLennan Physics 1104C"— Presentation transcript:

1 Modern Optics PHY485F/1485F www.physics.utoronto.ca/~phy485/ModOpt/ Robin Marjoribanks McLennan Physics 1104C marj@physics.utoronto.ca

2 What makes this course important? foundation course in modern (quantum) optics basic literacy in a modern, active area of physics fundamental science, concepts, understanding a subject of technology that supports many others an extremely active, intense area of current research numerous Nobel prizes in the last decade

3 Topics laser as a pivot-point look backwards from invention to classical optics needed to understand how the laser tailors light, forward to the quantum optics explosion that has followed basic optics diffraction theory gaussian beams laser resonators semiclassical laser theory ultrafast pulse generation a selection of currently active research topics: laser cooling, photonic bandgap structures, extreme optics, quantum information and other topics

4 The Laser Oscillator Laser oscillators are built in a Fabry-Perot resonator W. Silvfast http://cord.org/step_online/st1-5/st15ttl.htm solutions are standing waves in this laser cavity spectrum of possible frequencies satisfy:  n = n 2π c / L L is the cavity length = n  o c is speed of light these modes may each have their own amplitude E n thus the optical field in the cavity can be written: E n e i(n  o t+  n  In a free cavity, with random  (n), we get ‘wild’ light. In a cavity where we make  (n)=0, we lock the modes together

5 Ultrafast Ti:sapphire laser Kerr effect makes intense pulses ‘self-focus’ slightly intense pulses pass better through aperture, where weak ones blocked alters stability of cavity slightly, favoring intense pulses also can affect deflection of beam, to same effect modelocking can start from mechanical vibration: ‘magic modelocking’

6 Er-fiber laser (Modern Physics Lab PHY326/426) output: 1550 nm 100 fs 2–40 mW pump: 980 nm diode 60 mW min fiber coupled modelocking: Kerr ellipse- rotation polarizer discrimination dispersion 2 kinds of fiber opposite GVD

7 Course Approach multiple resources: textbook lectures online materials: demos, applications office hours other texts study/work groups all are needed each has particular advantages

8 Lectures will concentrate on what lectures do best won’t just lead you through the textbook will provide interaction and feedback that books cannot will provide demonstrations and animations will depend on you having read/prepared also

9 Textbook “Optics” (4th edition), Hecht we’ll use this for its wonderful illustrations and applications, but it is organized by device rather than by principle — we’ll use it for its modules, as we proceed more logically (see guide to topics on website) optional (cheap): “Introduction to Modern Optics” by Grant R. Fowles (get online errata correcting a number of errors) reference: “Lasers” by P.W. Milonni and J.H. Eberly (Wiley).

10 Office Hours Professor Marjoribanks Wednesdays 2–3 pm (OK?) MP1104C markers to be determined

11 Contact I’ll initiate email using only your official registered U of T email address (e.g., zubeki@utoronto.ca) problem set changes, class announcements, reminders may go there you’re responsible for email

12 Problem sets Problem set due dates (posted on web) PS#1 - due 2 October PS#2 - due 21 October Midterm Test: 28 October 2008, 5-7 pm OK? PS#3 - due 13 November PS#4 - due 4 December (zero extensions) Group seminar presentations 22 November 10-5pm solutions posted on course web-site late policy:20% off per day zero, once solutions are posted (~3 days)

13 getting Midterm back the TAs each mark part of the midterm I am at a conference the third week of November  if the TAs don’t both get their marking done in one week, you won’t get the midterm back before the start of December

14 Marking scheme Term work: 4 problem sets (best 3 out of 4)30% seminar group presentation (22 Nov)10% term test60% 100% Final exam final exam100% Course mark:60/40 flip-flop

15 Midterm test – only impossibles 27 Monday28 Tues29 Wed30 Thurs31 Friday 9-10xxxxx 10-11xxxxx 11-12xxxxx 12-1pm 1-2 2-3 3-42xxxxx 2 4-522Colloq√ 5-6√82√ 6-7383 7-8 8-9


Download ppt "Modern Optics PHY485F/1485F Robin Marjoribanks McLennan Physics 1104C"

Similar presentations


Ads by Google