Download presentation

Presentation is loading. Please wait.

Published byOlivia Stevenson Modified over 4 years ago

1
Revision of Chapter IV Three forms of transformations z transform DTFT: a special case of ZT DFT: numerical implementation of DTFT DTFT X(w)= X (z)|Z=exp(jw) DFT: Truncated the DTFT to finite terms and use w = 2p k / N, where N is the total Length of the data

2
x(1)x(8)x(9)x(10)x(11)x(12)x(3)x(4)x(5)x(6)x(7)x(2) DATA w 0 (k)w 7 (k)w 8 (k)w 9 (k)w 10 (k)w 11 (k)w 2 (k)w 3 (k)w 4 (k)w 5 (k)w 6 (k)w 1 (k) W(k)=exp(-j2 k/N) x X(1)X(8)X(9)X(10)X(11)X(12)X(3)X(4)X(5)X(6)X(7)X(2) = (k=1,2,3,4,…,12) This is a sequence of complex number so we have magnitude and phase for each number above X(i) = r(i) exp( j p(i) ) r(1)r(8)r(9)r(10)r(11)r(12)r(3)r(4)r(5)r(6)r(7)r(2)p(1)p(8)p(9)p(10)p(11)p(12)p(3)p(4)p(5)p(6)p(7)p(2)

3
DFT is a windowed version of DTFT. When we use DFT to estimate spectrum, there are two effectors: loss of resolution and leakage of energy Sampling theorem tells us that if we sample an analogous signal fast enough (double the bandwidth of it), we could recover the analog signal completely.

Similar presentations

OK

Outline 2-D Fourier transforms The sampling theorem Sampling Aliasing

Outline 2-D Fourier transforms The sampling theorem Sampling Aliasing

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google