Download presentation
Presentation is loading. Please wait.
Published bySofia Stokes Modified over 11 years ago
1
Max-Planck-Institut für molekulare Genetik EBSV06 Martin Vingron Max-Planck-Institut für molekulare Genetik Reporting on work mainly by Tobias Müller, Antje Krause, Hannes Luz Family Specific Rates of Protein Evolution or, more general Markov models in protein evolution: Resolvent method, Systers, FSR
2
Max-Planck-Institut für molekulare Genetik EBSV06 Amino Acid Replacement
3
Max-Planck-Institut für molekulare Genetik EBSV06 Degree of Divergence
4
Max-Planck-Institut für molekulare Genetik EBSV06 Markov Assumption
5
Max-Planck-Institut für molekulare Genetik EBSV06 Exponential function p(t) = exp(qt) P(t) = exp(Qt) The same works with matrices: Infinitesimal generator, Rate matrix Transition probabilites A C R K F L
6
Max-Planck-Institut für molekulare Genetik EBSV06 The Model Variables
7
Max-Planck-Institut für molekulare Genetik EBSV06 The Problem
8
Max-Planck-Institut für molekulare Genetik EBSV06 Dayhoffs Estimation Procedure
9
Max-Planck-Institut für molekulare Genetik EBSV06 Linear Approximation
10
Max-Planck-Institut für molekulare Genetik EBSV06 Shortcomings
11
Max-Planck-Institut für molekulare Genetik EBSV06 The Problem (revisited) Homologous Sequences Evolutionary Distance Input DataRates
12
Max-Planck-Institut für molekulare Genetik EBSV06 An alternative Representation The întergral is called Resolvent of the transition probabilities.
13
Max-Planck-Institut für molekulare Genetik EBSV06 Resolvent Estimation Procedure
14
Max-Planck-Institut für molekulare Genetik EBSV06 ML Estimation of alignment distance
15
Max-Planck-Institut für molekulare Genetik EBSV06 Resolvent function theoretical estimated theoretical estimated ij
16
Max-Planck-Institut für molekulare Genetik EBSV06 Amino Acid Score Matrix
17
Max-Planck-Institut für molekulare Genetik EBSV06 Here we are… VT160
18
Max-Planck-Institut für molekulare Genetik EBSV06 Proportion of true relations found The proof of the pudding…. … is in the eating! Number of false positive matches Proportion of true relations found Many false positives, few true homologs Few false positives, many true homologs References: [1] Gavin A. Price, Gavin E. Crooks, Richard E. Green, and Steven E. Brenner 2005. Statistical evaluation of pairwise proteinsequence comparison with the Bayesian bootstrap.Bioinformatics, 21:3824-3831. [2] Gavin E. Crooks, and Steven E. Brenner 2005. An alternative model of amino acid replacement, 7,21, 975-980.
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.