Presentation is loading. Please wait.

Presentation is loading. Please wait.

HOW ARE COGNITIVE MAPS REPRESENTED IN THE BRAIN? VISUAL VS. PROPOSITIONAL REPRESENTATIONS AND IMPLICATIONS FOR GPS TECHNOLOGY Serj Mooradian Alison Wheatley.

Similar presentations


Presentation on theme: "HOW ARE COGNITIVE MAPS REPRESENTED IN THE BRAIN? VISUAL VS. PROPOSITIONAL REPRESENTATIONS AND IMPLICATIONS FOR GPS TECHNOLOGY Serj Mooradian Alison Wheatley."— Presentation transcript:

1 HOW ARE COGNITIVE MAPS REPRESENTED IN THE BRAIN? VISUAL VS. PROPOSITIONAL REPRESENTATIONS AND IMPLICATIONS FOR GPS TECHNOLOGY Serj Mooradian Alison Wheatley Becky Wright Jane Emerton Penelope Dimitrakopoulou

2 INTRODUCTION Behaviourism: from the 1920s onward, behaviour was explained in terms of simple stimulus-response mechanisms. Rats learnt mazes by linking rewards (stimulus; i.e. food) with muscle movements (response; i.e. running in particular directions). Behaviourism: from the 1920s onward, behaviour was explained in terms of simple stimulus-response mechanisms. Rats learnt mazes by linking rewards (stimulus; i.e. food) with muscle movements (response; i.e. running in particular directions). Tolman (1932) cast doubt on this theory – rats in mazes: swimming versus running. Tolman (1932) cast doubt on this theory – rats in mazes: swimming versus running. The researchers concluded that rats construct a cognitive map in their brains, and use the internal representation to solve mazes.

3 MORE ABOUT COGNITIVE MAPPING A cognitive map is a cognitive representation of an environment, that is built up whenever a person encounters a novel environment (Lynch, 1960). It can comprise of landmarks, nodes, and paths. A cognitive map is a cognitive representation of an environment, that is built up whenever a person encounters a novel environment (Lynch, 1960). It can comprise of landmarks, nodes, and paths. The more experience a person has with an environment, the better their cognitive map (Jacobson et al 2001). The more experience a person has with an environment, the better their cognitive map (Jacobson et al 2001). The type and content of how this information is represented in the brain is still a prominent and controversial debate. The type and content of how this information is represented in the brain is still a prominent and controversial debate. There appears at present to be two main arguments – those who believe cognitive maps are represented pictorially vs. those who believe they are represented propositionally. There appears at present to be two main arguments – those who believe cognitive maps are represented pictorially vs. those who believe they are represented propositionally.

4 HOW ARE COGNITIVE MAPS REPRESENTED IN THE BRAIN? 1. PICTORIAL vs. PROPOSITIONAL 1. PICTORIAL vs. PROPOSITIONAL Type and content of cognitive maps is still being debated Type and content of cognitive maps is still being debated Pictorial – Kosslyn Pictorial – Kosslyn Depiction of environment Depiction of environment Implicates visual system in production and processing – the minds eye Implicates visual system in production and processing – the minds eye Propositional – Pylyshyn Propositional – Pylyshyn Similar to language Similar to language Syntactical representation Syntactical representation

5 PROPOSITIONAL vs. PICTORIAL North, (TREE, HOUSE) North, (TREE, HOUSE) South (LAKE, HOUSE) South (LAKE, HOUSE) -Linguistic description of relationships -Discrete symbols -Requires a symbols to describe the relationships -Follows grammatical rules -Abstract symbols -Unambiguous -Multiple modes of perception -More easily accessible -Does not require knowledge of language -Not discrete symbols -Does not require a symbol to describe the relationships -Concrete symbols -Ambiguous -Only visual mode of perception

6 EARLY COGNITIVE MAP EXPERIMENTS Images cannot be directly observed so study brain at functional level Images cannot be directly observed so study brain at functional level Kosslyn et al (1978)– Mental Image Scanning Tasks Kosslyn et al (1978)– Mental Image Scanning Tasks Method Method Memorise a map of 7 locations Memorise a map of 7 locations Focus on a location Focus on a location Decide if a second location was on the map Decide if a second location was on the map Picture a black speck moving between the two locations Picture a black speck moving between the two locations Results Results Scanning time increased linearly with the distance between the two locations Scanning time increased linearly with the distance between the two locations Conclusion Conclusion It takes longer to scan larger distances compared to small if images are depictions It takes longer to scan larger distances compared to small if images are depictions Images are depictive rather than descriptive and have spatial properties Images are depictive rather than descriptive and have spatial properties

7 EARLY EXPERIMENTS cont. ALTERNATIVE MODEL Pylyshyn (1981) – Critique of Kosslyns Experiments Pylyshyn (1981) – Critique of Kosslyns Experiments Participants asked to see a scene Participants asked to see a scene Use knowledge about really world to simulate events Use knowledge about really world to simulate events Does not tell us about inherent nature of imaging Does not tell us about inherent nature of imaging Experiment Experiment Scanning phenomenon vanishes when asked to judge direction Scanning phenomenon vanishes when asked to judge direction Can switch attention between locations without simulating moving Can switch attention between locations without simulating moving Distance between locations had no effect on response time of direction Distance between locations had no effect on response time of direction Conclusion Conclusion Unclear which properties are due to the inherent nature of the mental imaging system and its mechanism Unclear which properties are due to the inherent nature of the mental imaging system and its mechanism Or which properties are cognitively penetrable by the persons own knowledge and beliefs during imagery. Or which properties are cognitively penetrable by the persons own knowledge and beliefs during imagery.

8 NEW TECHNOLOGY GIVES US A WINDOW INTO THE MIND Attempts to solve debate via behavioural methods had led researchers down a cul-de-sac. However…. Advances in technology offered a new opportunity. Opened up a window into the mind.

9 PET (POSITRON EMISSION TOMOGRAPHY) PET (POSITRON EMISSION TOMOGRAPHY) ~ ²/ 3 of activation shared by vision and imagery. (Kosslyn, Thompson & Alpert, 1997) However, PET not very precise. rTMS (Repetitive Transcranial Magnetic Stimulation) rTMS (Repetitive Transcranial Magnetic Stimulation) Applying rTMS to the occipital cortex causes temporary impairment of visual mental imagery (Kosslyn et al., 1999).

10 Pylyshyn (2002): Possible visual system can be involved in both vision and mental imagery but without generating a picture-like representation. It is important not only that such … areas be involved in imagery, but also that their involvement be of the right sort – that the way their topographical organization is involved reflects the spatial properties of the image… (Pylyshyn, 2002, p.175) PYLYSHYNS RESPONSE

11 RETINOTOPICALITY Area 17: Located in the occipital lobe. Involved in early visual processing e.g. shape, location. Activity is distributed according to a functional space i.e. the spatial properties of the visual scene are reflected in the spatial patterns of the brain activity (Kosslyn, 1994).

12 TOP RIGHT SIDE BOTTOM Visual Spatial Spectrum:

13 FUNCTIONAL SPACE: Different spatial areas within the visual field reflected onto the retina…. … result in activation in different primary visual areas. Adapted from Slotnick et al (2005)

14 Q. DOES THE RETINOTOPICAL ACTIVITY FOUND IN VISION ALSO OCCUR DURING MENTAL IMAGERY? Klein et al (2004), Slotnick et al (2005); fMRI study (Functional Magnetic Resolution Imaging) fMRI study (Functional Magnetic Resolution Imaging) Used simple visual stimuli: Used simple visual stimuli: Asked participants to both visualise and imagine the stimuli.

15 Vertical-axis space = red & green areasHorizontal-axis space = blue & yellow areas VisionImagery Adapted from Slotnick et al (2005)

16 PYLYSHYNS RESPONSE TO KOSSLYN Kosslyns findings have not been replicated Kosslyns findings have not been replicated They are inherently biased They are inherently biased Participants were asked to visualize an image Participants were asked to visualize an image By visualizing an image, they are being asked to see it and hence their visual cortex must be stimulated By visualizing an image, they are being asked to see it and hence their visual cortex must be stimulated

17 PYLYSHYNS RESPONSE TO KOSSLYN cont. Visual images are caused by a response to light on the retina and mental imagery is a top-down process from higher cortical processes Visual images are caused by a response to light on the retina and mental imagery is a top-down process from higher cortical processes It is unlikely that the same response will occur to both types of imagery It is unlikely that the same response will occur to both types of imagery Kosslyn: literally pictures in the brain Kosslyn: literally pictures in the brain If it takes longer to scan greater imagined distance (time=distance/speed) If it takes longer to scan greater imagined distance (time=distance/speed) i.e. simulation of real space i.e. simulation of real space

18 PYLYSHYNS RESPONSE TO KOSSLYN cont. Other differences in how visual and mental images are accessed: Other differences in how visual and mental images are accessed: Signature properties Signature properties Manipulations of mental images not accurate Manipulations of mental images not accurate Cortical images fade more quickly Cortical images fade more quickly Emmerts Law Emmerts Law Two forms of images not connected to the motor system in the same way (reaching for an object) Two forms of images not connected to the motor system in the same way (reaching for an object) Retinal images are pre-interpretation; mental images are the interpretation Retinal images are pre-interpretation; mental images are the interpretation

19 PYLYSHYNS RESPONSE TO KOSSLYN cont. Cognitive maps are developed by being in the environment, receiving cues, interpreting route cues as opposed to visual, pictorial cues on a map Cognitive maps are developed by being in the environment, receiving cues, interpreting route cues as opposed to visual, pictorial cues on a map Use propositional knowledge to navigate, as it is needed Use propositional knowledge to navigate, as it is needed Can be pictorial, but isnt by nature Can be pictorial, but isnt by nature Blind people are able to form cognitive maps (Landau, 1986) Blind people are able to form cognitive maps (Landau, 1986) The experience of moving through an environment is enough to form a cognitive map, without actually navigating the environment (Millar, 1994) The experience of moving through an environment is enough to form a cognitive map, without actually navigating the environment (Millar, 1994)

20 PYLYSHYNS RESPONSE TO KOSSLYN cont. When one is driving down the M4, one does not necessarily visualize a map of the M4 going East- West and taking exit 18 south to bath, one simply exits at exit 18 and drives (subconscious behaviour) When one is driving down the M4, one does not necessarily visualize a map of the M4 going East- West and taking exit 18 south to bath, one simply exits at exit 18 and drives (subconscious behaviour) One accesses ones cognitive map of the region without stimulating the visual cortex (however it is (hopefully) stimulated by the road ahead – but not terms of the cognitive map) One accesses ones cognitive map of the region without stimulating the visual cortex (however it is (hopefully) stimulated by the road ahead – but not terms of the cognitive map)

21 GLOBAL POSITIONING SYSTEMS GPSs are a network of satellites and computers that can locate, track and monitor any mobile object/individual on earth GPSs are a network of satellites and computers that can locate, track and monitor any mobile object/individual on earth GPS in cars provide the user with a pictorial map and auditory directions GPS in cars provide the user with a pictorial map and auditory directions GPS is normally a navigation tool GPS is normally a navigation tool However - if we regard GPS as simply an aid for cognitive map development… However - if we regard GPS as simply an aid for cognitive map development…

22 IMPLICATIONS FOR THE DESIGN OF GLOBAL POSITIONING SYSTEMS (GPS) … if Kosslyn is right: GPS technology should display visual information…. GPS technology should display visual information…. However, a visual display may turn out to be more of a hindrance than a help. Kosslyn (1985) found evidence that visual information similar to that of a mental representation can actually interfere with the cognitive map. However, a visual display may turn out to be more of a hindrance than a help. Kosslyn (1985) found evidence that visual information similar to that of a mental representation can actually interfere with the cognitive map.

23 IMPLICATIONS FOR THE DESIGN OF GLOBAL POSITIONING SYSTEMS (GPS) …if Pylyshyn is right: GPS technology should provide auditory information GPS technology should provide auditory information

24 GPS TECHNOLOGY cond. London cabbies London cabbies Accuracy/reliability of GPS?? Accuracy/reliability of GPS?? Knowledge of road closures, etc. Knowledge of road closures, etc. GPS instead of training or to aid training? GPS instead of training or to aid training? Navigation vs. cognitive maps Navigation vs. cognitive maps Pictorial vs Propositional debate has not been resolved yet Pictorial vs Propositional debate has not been resolved yet Although taxi drivers may not find GPS useful on the job, there is much agreement that it can be useful to develop cognitive maps in training. Although taxi drivers may not find GPS useful on the job, there is much agreement that it can be useful to develop cognitive maps in training. Cognitive maps prove to be pictorial or propositional in nature (or a combination of both). This will have implications as how best to develop future technology. Cognitive maps prove to be pictorial or propositional in nature (or a combination of both). This will have implications as how best to develop future technology.

25 REFERENCES Jacobson, D., Lippa, Y., Golledge, R.G., Kitchin, R., & Blades, M. (2001). Rapid development of cognitive maps in people with visual impairments when exploring novel geographic spaces. Bulletin of people-environment studies, 1-8. Jacobson, D., Lippa, Y., Golledge, R.G., Kitchin, R., & Blades, M. (2001). Rapid development of cognitive maps in people with visual impairments when exploring novel geographic spaces. Bulletin of people-environment studies, 1-8. Klein, I., Dubois, J., Mangin, J-F., Kherif, F., Flandin, G., Poline, J-B., Denis, M., Kosslyn, S. M., Le Bihan, D. (2004). Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. Cognitive Brain Research, 22, Klein, I., Dubois, J., Mangin, J-F., Kherif, F., Flandin, G., Poline, J-B., Denis, M., Kosslyn, S. M., Le Bihan, D. (2004). Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. Cognitive Brain Research, 22, Kosslyn, S. M. (1983). Ghosts in the Minds Machine. Creating and using images in the brain. George J. McLeod Limited, Toronto. Kosslyn, S. M. (1983). Ghosts in the Minds Machine. Creating and using images in the brain. George J. McLeod Limited, Toronto. Kosslyn, S. M., Ball, T.M. and Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 4, Kosslyn, S. M., Ball, T.M. and Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 4, Kosslyn, S. M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J. P., Thompson, W. L., Ganis, G., Sukel, K. E., and Alpert, N. M. (1999). The role of area 17 in visual imagery: Convergent evidence from PET and rTMS. Science, 284, Kosslyn, S. M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J. P., Thompson, W. L., Ganis, G., Sukel, K. E., and Alpert, N. M. (1999). The role of area 17 in visual imagery: Convergent evidence from PET and rTMS. Science, 284, Kosslyn, S. M., Thompson, W. L., and Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6, Kosslyn, S. M., Thompson, W. L., and Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6, Landau, B. (1996). Early map use as an unlearned ability. Cognition, 22, Landau, B. (1996). Early map use as an unlearned ability. Cognition, 22,

26 Lynch, K. (1960). The image of the city. Cambridge, MA: M.I.T. Press. Lynch, K. (1960). The image of the city. Cambridge, MA: M.I.T. Press. Millar, S. (1994). Understanding and representing space theory and evidence from studies with blind and sighted children. New York: Oxford University Press. Millar, S. (1994). Understanding and representing space theory and evidence from studies with blind and sighted children. New York: Oxford University Press. Pylyshyn, Z. (2000). Is the "imagery debate" over? If so, what was it about? In: E. Dupoux (ed.). Cognition: a critical look. Advances, questions and controversies in honor of J. Mehler. Cambridge, MA, MIT Press. Available online at: mehler.pdf Pylyshyn, Z. (2000). Is the "imagery debate" over? If so, what was it about? In: E. Dupoux (ed.). Cognition: a critical look. Advances, questions and controversies in honor of J. Mehler. Cambridge, MA, MIT Press. Available online at: mehler.pdf Pylyshyn, Z. (2003). Return of the mental image: are there really pictures in the brain? Trends in Cognitive Sciences, 7(3), Pylyshyn, Z. (2003). Return of the mental image: are there really pictures in the brain? Trends in Cognitive Sciences, 7(3), Pylyshyn, Z.W. (2002). Mental Imagery: In search of a theory. Behavioral Brain Science, 25, Pylyshyn, Z.W. (2002). Mental Imagery: In search of a theory. Behavioral Brain Science, 25, Slotnick, S. D., Thompson, W. L., and Kosslyn, S. M. (2005). Visual Mental Imagery Induces Retinotopically Organized Activation of Early Visual Areas. Cerebral Cortex, 15, Slotnick, S. D., Thompson, W. L., and Kosslyn, S. M. (2005). Visual Mental Imagery Induces Retinotopically Organized Activation of Early Visual Areas. Cerebral Cortex, 15, Tolman, E.C. (1932). Purposive behavior in animals and men. Berkeley, CA: University of California Press. Tolman, E.C. (1932). Purposive behavior in animals and men. Berkeley, CA: University of California Press. REFERENCES cont.


Download ppt "HOW ARE COGNITIVE MAPS REPRESENTED IN THE BRAIN? VISUAL VS. PROPOSITIONAL REPRESENTATIONS AND IMPLICATIONS FOR GPS TECHNOLOGY Serj Mooradian Alison Wheatley."

Similar presentations


Ads by Google