Presentation is loading. Please wait.

Presentation is loading. Please wait.

Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Similar presentations


Presentation on theme: "Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)"— Presentation transcript:

1 Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.) J. Silman (Tel-Aviv Univ.) Quantum Information Theory: Present Status and Future Directions Aug. 23-27 2004, INI, Cambridge

2 Vacuum Entanglement Motivation: QI Fundamentals: SR QM QI: natural set up to study Ent. causal structure ! LO. H 1, many body Ent.. Q. Phys.: Can Ent. shed light on “quantum effects”? (low temp. Q. coherences, Q. phase transitions, DMRG, Entropy Area law.) A B See also Latorre’s, Verstraete’s & Plenio’s talks

3 Continuum results: BH Entanglement entropy: Unruh (76), Bombelli et. Al. (86), Srednicki (93), Callan & Wilczek (94). Albebraic Field Theory: Summers & Werner (85), Halvarson & Clifton (00). Entanglement probes: Reznik (00), Reznik, Retzker & Silman (03). Discrete models: Harmonic chains: Audenaert et. al (02), Botero & Reznik (04). Spin chains: Wootters (01), Nielsen (02), Latorre et. al. (03). Linear Ion trap: Retzker, Cirac & Reznik (04). Background

4 A B (I) Are A and B entangled? (II) Are Bell’s inequalities violated? (III) Where does ent. “come from”? (IV) Can we detect it?

5 A B (I) Are A and B entangled? Yes, for arbitrary separation. ("Atom probes”). (II) Are Bell’s inequalities violated? Yes, for arbitrary separation. (Filtration, “hidden” non-locality). (III) Where does it “come from”? Localization, shielding. (Harmonic Chain). (IV) Can we detect it? Entanglement Swapping. (Linear Ion trap).

6 Plan : (1). Field entanglement: local probes. Reznik (00), Reznik, Retzker, Silman (03). (2). Harmonic chain: spatial structure of ent. Botero, Reznik (04). (3). Linear Ion trap: detection of ground state ent. Retzker, Cirac, Reznik (04).

7 A B A pair of causally disconnected localized detectors Probing Field Entanglement RFT! Causal structure QI ! LOCC L> cT B. Reznik quant-ph/0008006,0112044 B. Reznik, A. Retzker & J. Silman quant-ph/0310058

8 Causal Structure + LO For L>cT, we have [  A,  B ]=0 Therefore U INT =U A ­ U B  E Total =0, but  E AB >0. (Ent. Swapping) Vacuum ent ! Detectors’ ent. Lower bound.  LO

9 Note: we do not use the rotating wave approximation. Field – Detectors Interaction Window Function Interaction: H INT =H A +H B H A =  A (t)(e +i  t  A + +e -i  t  A - )  (x A,t) Initial state: |  (0) i =|+ A i |+ B i|VACi Two-level system Unruh (76), B. Dewitt (76), particle-detector models.

10 Probe Entanglement Calculate to the second order (in  the final state, and evaluate the reduced density matrix. Finally, we use Peres’s (96) partial transposition criterion to check inseparability and use the Negativity as a measure. ?  AB (4£ 4) = Tr F  (4£1)  i p i  A (2£2) ­  B (2£2)

11

12 ** ++ *+ +*

13 P.T, P.T. ** ++ *+ +*

14 Emission < Exchange |++i + h X AB |VACi |** i “+”… X AB ||E A ||||E B ||< ||h0|X AB i|| Off resonance Vacuum “window function”  Superocillatory functions (Aharonov (88), Berry(94)).

15 We can tailor a superoscillatory window function for every L to resonate with the vacuum “window function” Entanglement for every separation Superocillatory window function Vacuum Window function  Exchange term / exp(-f(L/T))

16 Bell’s Inequalities No violation of Bell’s inequalities. But, by applying local filters Maximal Ent. Maximal violation   N (  ) M (  ) |++i + h X AB |VACi |** i “+”… !   |+i|+i + h X AB |VACi|*i|*i “+”… CHSH ineq. Violated iff M (  )>1, (Horokecki (95).) “Hidden” non-locality. Popescu (95). Gisin (96). Negativity Filtered Reznik, Retzker, Silman Reznik, Retzker, Silman 0310058

17 Summary (1) 1) Vacuum entanglement can be distilled! 2) Lower bound: E ¸ e -(L/T) 2 (possibly e -L/T ) 3) High frequency (UV) effect:  ¼ L 2. 4) Bell inequalities violation for arbitrary separation maximal “hidden” non-locality. Reznik, Retzker, Silman Reznik, Retzker, Silman 0310058

18 Spatial structure of entanglement in the Harmonic Chain A. Botero & B. Reznik 0403233

19 The Harmonic Chain model H chain ! H scalar field =s  (x) 2 +(5  ) 2 +m 2  2 (x))dx  chain / e -q i Q -1 q j /4 I) Gaussian state ! Exact calculation of Ent. II) Mode-wise decomposition ! Identify spatial Ent. Structure A B 1 Circular Harmonic chain A. Botero & B. Reznik 0403233

20 Gaussian (pure) Entanglement AA Covariance Matrix M Second moments h q i q j i, h p i p j i Symplectic Spectrum Entanglement Entropy i The reduced density matrix of a Gaussian state Is a Gaussian density matrix.  AB E=  ( +1/2)log( +1/2) – ( -1/2)log( -1/2)

21 Entanglement: block vs. the rest (Log-2 scale) weak strong E' 1/3 lnN b +E c ( ,N b )  c=1, bosonic 1-d FT

22 Mode-Wise decomposition theorem 0209026 Botero, Reznik 0209026 (bosonic modes) 0404176 Botero, Reznik 0404176 (fermionic modes) AB AB  AB =  11  22 …  kk  0,..  kk /  e -  k n |ni|ni Two modes squeezed state qipiqipi QiPiQiPi  AB =  c i |A i i|B i i Schmidt Mode-Wise decomposition Local U

23 Spatial Entanglement Structure q i ! Q m =  u i q i p i ! P m =  v i p i A B q i, p i quantifies the contribution of local (q i, p i ) oscillators to the collective coordinates (Q i,P i ) Circular Harmonic chain localcollective Participation function : P i =u i v i,  P i =1

24 Site Participation Function Weak coupling Strong coupling N=32+48 osc. Modes are ordered in decreasing Ent. Contribution, from front to back.

25 Mode Shapes strongweak Outer modes Inner modes  continuum Solid – u Dashed -v

26 Entanglement Contribution Entanglement as a function of mode number decays exponentially.

27 Logarithmic dependence in the continuum limit with the overall 1/3 coefficient as predicted by conformal field theory. Inclusion of an ultraviolet cutoff leads to Localization of the highest frequency inner modes. Mode shape hierarchy with distinctive layered structure, with exponential decreasing contribution of the innermost modes. Summary (2)

28 Can we detect Vacuum Entanglement?

29 Detection of Vacuum Entanglement in a Linear Ion Trap Paul Trap A B Internal levels H 0 =  z (  z A +  z B )+  n a n y a n H int =  (t)(e -i   + (k) +e i   - (k) )x k H=H 0 +H int A. Retzker, J. I. Cirac, B. Reznik 0408059 1/  z << T<<1/ 0

30 Entanglement in a linear trap Entanglement between symmetric groups of ions as a function of the total number (left) and separation of finite groups (right). |vaci=|0 c i|0 b i/  n e -  n |ni A |ni B

31 Causal Structure U AB =U A ­ U B + O([x A (0),x B (T)]) 

32 Two trapped ions Final internal state E formation (  final ) accounts for 97% of the calculated Entantlement: E(|vaci)=0.136 e-bits. |vaci|++i ! |  i(|**i+ e -  |++i) “Swapping” spatial ! internal states U=(e i  x  x ­ e i  p  y )­... U

33 Long Ion Chain AB But how do we check that ent. is not due to “non-local” interaction?

34 Long Ion Chain AB But how do we check that ent. is not due to “non-local” interaction? H truncated =H A © H B We compare the cases with a truncated and free Hamiltonians H AB !

35 Long Ion Chain L=6,15, N=20 L=10,11 N=20  denotes the detuning, L the locations of A and B.  exchange/emission >1, signifies entanglement.

36 Summary Atom Probes: Vacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent. reduces exponentially with the separation. High probe frequencies are needed for large separation. Harmonic Chain: Persistence of ent. for large separation is linked with localization of the interior modes. This seems to provide a mechanism for “shielding” entanglement from the exterior regions. Linear ion trap: -A proof of principle of the general idea is experimentally feasible for two ions. -One can entangle internal levels of two ions without performing gate operations.


Download ppt "Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)"

Similar presentations


Ads by Google