Presentation is loading. Please wait.

Presentation is loading. Please wait.

Low rate of lineage diversification High rates of lineage diversification Ancestral trait innovation Evolutionary dead ends (e.g. specialization hypothesis)

Similar presentations


Presentation on theme: "Low rate of lineage diversification High rates of lineage diversification Ancestral trait innovation Evolutionary dead ends (e.g. specialization hypothesis)"— Presentation transcript:

1 Low rate of lineage diversification High rates of lineage diversification Ancestral trait innovation Evolutionary dead ends (e.g. specialization hypothesis) Key innovation hypothesis for diversity Low rate of trait diversification no special name?Non-adaptive radiation High rate of trait diversification Adaptive divergence? Local adaptation? Adaptive radiation Niche conservatism

2

3 Hodges 95 Nectar spurs in Aquilegia Hodges and Arnold 1995 Proc Roy Soc.

4 Hodges 97 table Hodges and Arnold 1995 Proc Roy Soc.

5 zygomorphic laterally symmetric actinomorphic radially symmetric

6 Sargent 2004 Proc. Roy. Soc. London B. D>0: 14 D<0: 5

7 Maddison 2006 Evolution

8 Maddison et al. 2007 Evolution

9 Parameter estimation on simulated trees, N=500 taxa

10 Mayrose et al. 2011 Science

11 Anolis ecomorphs

12 Losos 98 Losos et al. 1998 Science

13 Losos 98 - 2a Losos et al. 1998 Science

14 Losos 98 - 2a Losos et al. 1998 Science

15 Losos 98 - 2a Losos et al. 1998 Science

16

17 Glor et al. 2003 Evolution

18 Harmon 03 Harmon et al. 2003 Science lineage diversity index = sum(obs – exp) positive value = early accumulation of lineages

19 Measuring niche conservatism - phylogenetic signal K: Blomberg et al. (2003) Evolution; examples: Ackerly, PNAS in review Blomberg’s K: measures degree of similarity among close relatives, relative to expectations based on Brownian motion K<<1K~1K>>1 convergencebrownianconserved

20 Harmon et al. 2003 Science mean subclade disparity/total disparity high values = high within group relative to among group variance = low phylo signal Morphological disparity index = sum(obs-exp): positive values= deep clades span similar trait range, i.e. convergence across clades and low signal

21 Harmon 03-3 Harmon et al. 2003 Science early diversification -> greater phylogenetic signal

22 Harmon et al. 2010 Assign proportional weighting of alternative models that best fit data

23 Diversification of height in maples, Ceanothus and silverswords ~30 mya ~45 mya rate = 0.014 felsens0.10 felsens0.79 felsens height data: Ackerly, unpubl., Hickman (1993), Wagner (1999) phylogenies: Renner et al.(2008), Hardig et al. (2000), Baldwin & Sanderson (1998) ~5.2 mya

24 Are there differences among clades in trait diversification (= disparification) rates O’Meara et al. 2006 Nested ML test: Does a 2 rate model provide a sufficiently better fit than a 1 rate model?

25 Martin and Wainright 2011

26

27

28

29

30 Quantifying rates of phenotypic evolution Haldane (1949) Evolution; Gingerich (1983) Science 1 darwin = change by factor of e million yrs

31 Rates of phenotypic diversification under Brownian motion time var(x) 1 felsen = 1 Var(log e (trait)) million yrs Ackerly, PNAS 2009

32 Rates of phenotypic diversification (estimated for Brownian motion model) Rate (felsens) Leaf sizeHeight Acer Aesculus Arbutoideae Ceanothus lobelioids silverswords North temperate California Hawai’i Acer Aesculus Arbutoideae Ceanothus lobelioids silverswords ±1 s.e. Ackerly, PNAS 2009

33 C. cuneatus Ceanothus in California C. oliganthus C. cordulatus C. fresnensis ©Dean Taylor 2005 high low sclerophylly Sierra pine forest Coastal and foothill chaparral  niche  niche

34 E D phylogenetic overdispersion = ‘  first’ coldhot :: :: DD EE

35 E D E D D E D coldhot :: :: phylogenetic clustering = ‘  first’

36 C. cuneatus C. oliganthus C. cordulatus C. fresnensis ©Dean Taylor 2005 Sierra pine forest Coastal and foothill chaparral Cerastes Euceanothus

37

38

39 How do  -niche traits diverge during allopatric speciation? E1->  1 E2->  2 11 22  div. coexistence 1) alternative  states favored in 2 environments, coincidentally promote coexistence in modern communities.

40 How do  -niche traits diverge during allopatric speciation? 22 E1->  1 E2->  2 11 22 continued  div. coexistence 2)  differences evolved in secondary contact of sister taxa, prior to diversification of two clades; modern coexistence reflects ancestral character displacement; early habitat divergence undetectable due to rapid rates of evolution. 11 secondary contact

41 Losos 98-2

42 Becerra Becerra 2005 PNAS

43 Becerra LTT Lineages-through-time (LTT) plot Becerra 2005 PNAS

44 Inga Richardson et al. 2001 Science

45 Phylica Richardson et al. 2001 Nature


Download ppt "Low rate of lineage diversification High rates of lineage diversification Ancestral trait innovation Evolutionary dead ends (e.g. specialization hypothesis)"

Similar presentations


Ads by Google