Download presentation
Presentation is loading. Please wait.
1
Chapter 6 The Muscular System
Essentials of Human Anatomy & Physiology Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System Slides 6.1 – 6.17 Lecture Slides in PowerPoint by Jerry L. Cook Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
2
The Muscular System Muscles are responsible for all types of body movement Three basic muscle types are found in the body Skeletal muscle Cardiac muscle Smooth muscle Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
3
Characteristics of Muscles
Muscle cells are elongated (muscle cell = muscle fiber) Contraction of muscles is due to the movement of microfilaments All muscles share some terminology Prefix myo refers to muscle Prefix mys refers to muscle Prefix sarco refers to flesh Slide 6.2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
4
Skeletal Muscle Characteristics
Most are attached by tendons to bones Cells are multinucleate Striated – have visible banding Voluntary – subject to conscious control Cells are surrounded and bundled by connective tissue Slide 6.3 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
5
Connective Tissue Wrappings of Skeletal Muscle
Endomysium – around single muscle fiber Perimysium – around a fascicle (bundle) of fibers Figure 6.1 Slide 6.4a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
6
Connective Tissue Wrappings of Skeletal Muscle
Epimysium – covers the entire skeletal muscle Fascia – on the outside of the epimysium Figure 6.1 Slide 6.4b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
7
Skeletal Muscle Attachments
Epimysium blends into a connective tissue attachment Tendon – cord-like structure Aponeuroses – sheet-like structure Sites of muscle attachment Bones Cartilages Connective tissue coverings Slide 6.5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
8
Smooth Muscle Characteristics
Has no striations Spindle-shaped cells Single nucleus Involuntary – no conscious control Found mainly in the walls of hollow organs Figure 6.2a Slide 6.6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
9
Cardiac Muscle Characteristics
Has striations Usually has a single nucleus Joined to another muscle cell at an intercalated disc Involuntary Found only in the heart Figure 6.2b Slide 6.7 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
10
Function of Muscles Produce movement Maintain posture Stabilize joints
Generate heat Slide 6.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
11
Microscopic Anatomy of Skeletal Muscle
Cells are multinucleate Nuclei are just beneath the sarcolemma Figure 6.3a Slide 6.9a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
12
Microscopic Anatomy of Skeletal Muscle
Sarcolemma – specialized plasma membrane Sarcoplasmic reticulum – specialized smooth endoplasmic reticulum Figure 6.3a Slide 6.9b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
13
Microscopic Anatomy of Skeletal Muscle
Myofibril Bundles of myofilaments Myofibrils are aligned to give distrinct bands I band = light band A band = dark band Figure 6.3b Slide 6.10a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
14
Microscopic Anatomy of Skeletal Muscle
Sarcomere Contractile unit of a muscle fiber Figure 6.3b Slide 6.10b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
15
Microscopic Anatomy of Skeletal Muscle
Organization of the sarcomere Thick filaments = myosin filaments Composed of the protein myosin Has ATPase enzymes Figure 6.3c Slide 6.11a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
16
Microscopic Anatomy of Skeletal Muscle
Organization of the sarcomere Thin filaments = actin filaments Composed of the protein actin Figure 6.3c Slide 6.11b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
17
Microscopic Anatomy of Skeletal Muscle
Myosin filaments have heads (extensions, or cross bridges) Myosin and actin overlap somewhat Figure 6.3d Slide 6.12a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
18
Microscopic Anatomy of Skeletal Muscle
At rest, there is a bare zone that lacks actin filaments Sarcoplasmic reticulum (SR) – for storage of calcium Figure 6.3d Slide 6.12b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
19
Properties of Skeletal Muscle Activity
Irritability – ability to receive and respond to a stimulus Contractility – ability to shorten when an adequate stimulus is received Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
20
Nerve Stimulus to Muscles
Skeletal muscles must be stimulated by a nerve to contract Motor unit One neuron Muscle cells stimulated by that neuron Figure 6.4a Slide 6.14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
21
Nerve Stimulus to Muscles
Neuromuscular junctions – association site of nerve and muscle Figure 6.5b Slide 6.15a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
22
Nerve Stimulus to Muscles
Synaptic cleft – gap between nerve and muscle Nerve and muscle do not make contact Area between nerve and muscle is filled with interstitial fluid Figure 6.5b Slide 6.15b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
23
Transmission of Nerve Impulse to Muscle
Neurotransmitter – chemical released by nerve upon arrival of nerve impulse The neurotransmitter for skeletal muscle is acetylcholine Neurotransmitter attaches to receptors on the sarcolemma Sarcolemma becomes permeable to sodium (Na+) Slide 6.16a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
24
Transmission of Nerve Impulse to Muscle
Sodium rushing into the cell generates an action potential Once started, muscle contraction cannot be stopped Slide 6.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
25
The Sliding Filament Theory of Muscle Contraction
Activation by nerve causes myosin heads (crossbridges) to attach to binding sites on the thin filament Myosin heads then bind to the next site of the thin filament Figure 6.7 Slide 6.17a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
26
The Sliding Filament Theory of Muscle Contraction
This continued action causes a sliding of the myosin along the actin The result is that the muscle is shortened (contracted) Figure 6.7 Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
27
Types of Ordinary Body Movements
Flexion Extension Rotation Abduction Circumduction Slide 6.32 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
28
Body Movements Figure 6.13 Slide 6.33
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
29
Special Movements Dorsifelxion Plantar flexion Inversion Eversion
Supination Pronation Opposition Slide 6.34 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
30
Types of Muscles Prime mover – muscle with the major responsibility for a certain movement Antagonist – muscle that opposes or reverses a prime mover Synergist – muscle that aids a prime mover in a movement and helps prevent rotation Fixator – stabilizes the origin of a prime mover Slide 6.35 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
31
Naming of Skeletal Muscles
Direction of muscle fibers Example: rectus (straight) Relative size of the muscle Example: maximus (largest) Slide 6.36a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
32
Naming of Skeletal Muscles
Location of the muscle Example: many muscles are named for bones (e.g., temporalis) Number of origins Example: triceps (three heads) Slide 6.36b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
33
Naming of Skeletal Muscles
Location of the muscles origin and insertion Example: sterno (on the sternum) Shape of the muscle Example: deltoid (triangular) Action of the muscle Example: flexor and extensor (flexes or extends a bone) Slide 6.37 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
34
Head and Neck Muscles Figure 6.14 Slide 6.38
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
35
Trunk Muscles Figure 6.15 Slide 6.39
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
36
Deep Trunk and Arm Muscles
Figure 6.16 Slide 6.40 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
37
Muscles of the Pelvis, Hip, and Thigh
Figure 6.18c Slide 6.41 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
38
Muscles of the Lower Leg
Figure 6.19 Slide 6.42 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
39
Superficial Muscles: Anterior
Figure 6.20 Slide 6.43 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
40
Superficial Muscles: Posterior
Figure 6.21 Slide 6.44 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.