Download presentation

Published bySamson McDowell Modified over 8 years ago

1
**Chapters 8 and 9 Greatest Common Factors & Factoring by Grouping**

Definitions Factor, Factoring, Prime Polynomial Common Factor of 2 or more terms Factoring a Monomial into two factors Identifying Common Monomial Factors Factoring Out Common Factors Arranging a 4 Term Polynomial into Groups Factoring Out Common Binomials

2
**What’s a Polynomial Factor?**

product = (factor)(factor)(factor) … (factor) Factoring is the reverse of multiplication. 84 is a product that can be expressed by many different factorizations: 84 = 2(42) or 84 = 7(12) or 84 = 4(7)(3) or 84 = 2(2)(3)(7) Only one example, 84 = 2(2)(3)(7), shows 84 as the product of prime integers. Always try to factor a polynomial into prime polynomials

3
Factoring Monomials 12x3 also can be expressed in many ways: 12x3 = 12(x3) 12x3 = 4x2(3x) 12x3 = 2x(6x2) Usually, we only look for two factors – You try: 4a = 2(2a) or 4(a) x3 = x(x2) or x2(x) 14y2 = 14(y2) or 14y(y) or 7(2y2) or 7y(2y) or y(14y) 43x5 = 43(x5) or 43x(x4) or x3(43x2) or 43x2(x3) or …

4
**Common Factors of Polynomials**

When a polynomial has 2 or more terms, it may have common factors By definition, a common factor must divide evenly into every term For x2 + 3x the only common factor is x , so x2 + 3x = x·x + x·3 = x (? + ?) = x(x + 3) For 8y2 + 12y – 20 a common factor is 2, so 8y2 + 12y – 20 = 2(? + ? – ?) =2(4y2 + 6y – 10) Check factoring by multiplying: 2(4y2 + 6y – 10) = 8y2 + 12y – 20

5
**The Greatest Common Factor of Polynomials**

The greatest common factor (or GCF) is the largest monomial that can divide evenly into every term Looking for common factors in 2 or more terms … is always the first step in factoring polynomials Remember a(b + c) = ab + ac (distributive law) Consider that a is a common factor of ab + ac If we find a polynomial has form ab + ac we can factor it into a(b + c) For 3x2 + 3x the greatest common factor is 3x , so 3x2 + 3x = 3x·x + 3x·1 = 3x (? + ?) = 3x(x + 1) Another example: 8y2 + 12y – 20 The GCF is 4 – Divide each term by 4 8y2 + 12y – 20 = 4(? + ? – ?) = 4(2y2 + 3y – 5) Check by multiplying: 4(2y2) + 4(3y) – 4(5) = 8y2 + 12y – 20

6
**Practice: Find the Greatest Common Monomial Factor**

7(? – ?) = 7(a – 3) 19y3 + 3y = y(? + ?) = y(19y2 + 3) 8x2 + 14x – 4 = 2(? + ? – ?) = 2(4x2 + 7x – 2) 4y2 + 6y = 2y(? + ?) = 2y(2y + 3)

7
**Find the Greatest Common Factor**

18y5 – 12y4 + 6y3 = 6y3(? – ? + ?) = 6y3(3y2 – 2y + 1) 21x2 – 42xy + 28y2 = 7(? – ? + ?) = 7(3x2 – 6xy + 4y2) 22x3 – 110xy2 = 22x(? – ?) = 22x(x2 – 5y2) 7x2 – 11xy + 13y2 = No common factor exists

8
**Introduction to Factoring by Grouping: Factoring Out Binomials**

x2(x + 7) + 3(x + 7) = (x + 7)(? + ?) = (x + 7)(x2 + 3) y3(a + b) – 2(a + b) = (a + b)(? – ?) = (a + b)(y3 – 2)

9
**Practice: Factoring Out Binomials**

You try: 2x2(x – 1) + 6x(x – 1) – 17(x – 1) = (x – 1)(? + ? – ?) (x – 1)(2x2 + 6x – 17) y2(2y – 5) + x2(2y – 5) = (2y – 5)(? + ?) (2y – 5)(y2 + x2) 5x2(xy + 1) + 6y(xy – 1) = No common factors

10
**Factoring by Grouping Example: 2c – 2d + cd – d2 2(c – d) + d(c – d)**

For polynomials with 4 terms: Arrange the terms in the polynomial into 2 groups Factor out the common monomials from each group If the binomial factors produced are either identical or opposite, complete the factorization Example: 2c – 2d + cd – d2 2(c – d) + d(c – d) (c – d)(2 + d)

11
Factor by Grouping 8t3 + 2t2 – 12t – 3 2t2(4t + 1) – 3(4t + 1) (4t + 1)(2t2 – 3)

12
Factor by Grouping 4x3 – 6x2 – 6x + 9 2x2(2x – 3) – 3(2x – 3) (2x – 3)(2x2 – 3)

13
**Factor by Grouping y4 – 2y3 – 12y – 3 y3(y – 2) – 3(4y – 1)**

Oops – not factorable via grouping

14
**Grouping Unusual Polynomials**

x3 – 7x2 + 6x + x2y – 7xy + 6y x(x2 – 7x + 6) + y(x2 – 7x + 6) (x2 – 7x + 6)(x + y) (x – 1)(x – 6)(x + y)

15
What Next? Section 5.6 – Factoring Trinomials

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google