Download presentation

Presentation is loading. Please wait.

1
**Welcome to Interactive Chalkboard**

Mathematics: Applications and Concepts, Course 3 Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Developed by FSCreations, Inc., Cincinnati, Ohio Send all inquiries to: GLENCOE DIVISION Glencoe/McGraw-Hill 8787 Orion Place Columbus, Ohio Welcome to Interactive Chalkboard

2
Splash Screen

3
**Lesson 1-1 A Plan for Problem Solving **

Lesson 1-2 Variables, Expressions, and Properties Lesson 1-3 Integers and Absolute Value Lesson 1-4 Adding Integers Lesson 1-5 Subtracting Integers Lesson 1-6 Multiplying and Dividing Integers Lesson 1-7 Writing Expressions and Equations Lesson 1-8 Solving Addition and Subtraction Equations Lesson 1-9 Solving Multiplication and Division Equations Contents

4
**Example 1 Evaluate a Numerical Expression **

Example 2 Evaluate Algebraic Expressions Example 3 Evaluate Algebraic Expressions Example 4 Identify Properties Example 5 Find a Counterexample Lesson 2 Contents

5
**Divide inside parentheses first.**

Evaluate Divide inside parentheses first. Multiply next. Add and subtract in order from left to right. Answer: 4 Example 2-1a

6
Evaluate Answer: 2 Example 2-1b

7
**Evaluate the expression**

Replace r with 6 and s with 3. Do all multiplications first. Add and subtract in order from left to right. Answer: 20 Example 2-2a

8
**Evaluate the expression**

Answer: 24 Example 2-2b

9
**Evaluate the expression**

The fraction bar is a grouping symbol. Evaluate the expressions in the numerator and denominator separately before dividing. Replace q with 5 and r with 6. Do all multiplications first. Subtract in the denominator. Then divide. Answer: 2 Example 2-3a

10
**Evaluate the expression**

Answer: 2 Example 2-3b

11
**Name the property shown by**

Multiplying by 1 does not change the number. Answer: This is the Multiplicative Identity. Example 2-4a

12
**Name the property shown by the statement**

Answer: Commutative Property of Multiplication Example 2-4b

13
**The sum of an odd number and an even number is always odd.**

State whether the following conjecture is true or false. If false, provide a counterexample. The sum of an odd number and an even number is always odd. Answer: This conjecture is true. Example 2-5a

14
**Division of whole numbers is associative.**

State whether the following conjecture is true or false. If false, provide a counterexample. Division of whole numbers is associative. Answer: false; Example 2-5b

15
End of Lesson 2

Similar presentations

OK

Welcome to Interactive Chalkboard Algebra 1 Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION.

Welcome to Interactive Chalkboard Algebra 1 Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on scientific monuments of india and china Ppt on business environment nature concept and significance of the number Ppt on case study in psychology Ppt on share market in india Ppt on types of forest in india Ppt on history of earth Ppt on creativity and innovation Powerpoint template free download ppt on pollution Ppt on conservation of wildlife and natural vegetation killer Ppt on west central railway