Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fluid Mechanics FLOWING FLUIDS Engineering Fluid Mechanics 8/E by Crowe, Elger, and Roberson Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Similar presentations


Presentation on theme: "Fluid Mechanics FLOWING FLUIDS Engineering Fluid Mechanics 8/E by Crowe, Elger, and Roberson Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved."— Presentation transcript:

1 Fluid Mechanics FLOWING FLUIDS Engineering Fluid Mechanics 8/E by Crowe, Elger, and Roberson Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

2 Streamlines & Flow Patterns Flow Pattern: Construction of streamlines showing the flow direction Streamlines (light blue): Local velocity vector is tangent to the streamline at every point along the line at a single instant. Flow through an opening in a tank & over an airfoil section.

3 Streamline & Pathline Streamline: line drawn through flow field such that local velocity vector is tangent at every point at that instant – Tells direction of velocity vector – Does not directly indicate magnitude of velocity Pathline: shows the movement of a particle over time ► In unsteady flow, all can be distinct lines. ► The latter two tells us the history of flow as the former indicates the current flow pattern.

4 Examples... Predicted streamline pattern over the Volvo ECC prototype. Pathlines of floating particles.

5 TYPES OF FLOW Uniform: Velocity is constant along a streamline (Streamlines are straight and parallel) Non-uniform: Velocity changes along a streamline (Streamlines are curved and/or not parallel) Express velocity V = V(s,t) Vortex flow

6 Steady: streamline patterns are not changing over time Unsteady: velocity at a point on a streamline changes over time Flow patterns can tell you whether flow is uniform or non-uniform, but not steady vs. unsteady… Why? Because streamlines are only instantaneous representation of the flow velocity. TYPES OF FLOW

7 LAMINAR & TURBULENT FLOW (a)Experiment to illustrate the type of the flow (b) Typical dye streaks for different cases (a) (b)

8 Engineering Fluid Mechanics 8/E by Crowe, Elger, and Roberson Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. LAMINAR & TURBULENT FLOW

9 DIMENSIONALITY OF FLOW FLIED → Characterized by the number of spatial dimensions needed to describe velocity field. 1-D flow: Axisymmetric uniform flow in a circular duct 2-D flow: Uniform flow in a square duct 3-D flow: Uniform flow in an expanding square duct

10 FLOW ACCELERATION (rate of change of velocity with time ) Consider a fluid particle moving along a pathline... There are two components of acceleration: Tangential to pathline a t : the time-dependent acceleration related to change in speed. Normal to pathline a n : the centripetal acceleration related to motion along a curved pathline.

11 Flow Acceleration Local acceleration – occurs when flow is unsteady (direction or magnitude is changing with respect to time) Convective acceleration – occurs when flow is nonuniform (acceleration can depend on position in a flow field) Local acceleration – occurs when flow is unsteady Centripetal acceleration – occurs when the pathline is curved (normal to the pathline & directed toward the center of rotation)

12 Example: Convective Acceleration The nozzle shown below is 0.5 meters long. Find the convective acceleration at x = 0.25 m. The equation describing velocity variation is provided below.

13 Problem 4.17:

14 Problem 4.17: (Solution)

15 Example:


Download ppt "Fluid Mechanics FLOWING FLUIDS Engineering Fluid Mechanics 8/E by Crowe, Elger, and Roberson Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved."

Similar presentations


Ads by Google