Presentation is loading. Please wait.

Presentation is loading. Please wait.

Organic Chemistry Introduction Functional Groups Alkanes Alkenes

Similar presentations


Presentation on theme: "Organic Chemistry Introduction Functional Groups Alkanes Alkenes"— Presentation transcript:

1 Organic Chemistry Introduction Functional Groups Alkanes Alkenes Alkynes Alcohols Acids, Esters and Amides

2 Introduction Organic chemistry is the study of carbon-containing compounds especially compounds containing C-C bonds The field of organic chemistry is very important for a wide variety of reasons. A huge number of carbon-containing compounds are known. More than 16 million known compounds About 90% of new compounds made each year contain carbon

3 Introduction Most of the advances in the pharmaceutical industry are based on a knowledge of organic chemistry. Many drugs are organic compounds Life as we know it is based on organic chemistry. Most biologically important compounds contain carbon: DNA, RNA proteins carbohydrates

4 Introduction Learning organic chemistry requires you to integrate and apply many of the concepts you’ve learned in general chemistry: Electron configuration Valence bond theory Lewis structures Resonance structures Hybrid orbitals Molecular geometry Acid/base reactions Oxidation/reduction Kinetics Equilibrium Thermodynamics Stoichiometry

5 Introduction Some familiar organic compounds: propane methane
acetylene acetone

6 Introduction Some familiar organic compounds: Acetic acid “ether”
aspirin Ethyl alcohol

7 Introduction Most organic compounds have a “skeleton” that is composed of C-C bonds. The C-C bonds may be single bonds, double bonds, or triple bonds. The “skeleton” of an organic compound has H’s attached to it. other “heteroatoms” like O, halogens or N may be present as well

8 Introduction The number of bonds formed by C in an organic compound is determined by the electron configuration of C. Carbon has four valence electrons: 1s22s22p2

9 Introduction Carbon generally forms 4 equivalent bonds.
The formation of four equivalent bonds is best explained using the concept of hybrid orbitals.

10 Introduction The structure of an organic compound can be predicted by drawing a Lewis structure: H O H H C C C H H H acetone

11 Introduction In organic molecules, we generally describe the geometry around each carbon atom. Geometry is predicted using: VSEPR hybrid orbitals

12 Introduction When C forms four single bonds:
sp3 hybrid orbitals are involved tetrahedral geometry When C forms a double bond: sp2 hybrid orbitals are used trigonal planar geometry When C forms a triple bond: sp hybrid orbitals are used linear geometry

13 Introduction Example: Identify the electron domain geometry and hybrid orbitals used by each atom (except hydrogen) in the following compound.

14 Introduction Organic compounds contain not only C-C bonds but also C-H bonds. C-C and C-H bonds tend to be non-polar because there is a small difference in electronegativites Most (but not all) organic compounds are relatively non-polar generally not very soluble in water

15 Hydrocarbons The simplest organic compounds are the hydrocarbons:
organic compounds that contain only carbon and hydrogen four general types: alkanes alkenes alkynes aromatic hydrocarbons

16 Hydrocarbons Alkanes: hydrocarbons that contain only single bonds
Examples: Methane CH4 ethane H H H – C – C – H H H

17 Hydrocarbons Alkenes: hydrocarbons that contain a C = C double bond
H2C = CH2 (ethylene) Alkynes: hydrocarbons that contain a C C triple bond H – C C – H (acetylene)

18 Hydrocarbons Aromatic hydrocarbons:
contain a planar ring structure in which the carbon atoms are connected by a combination of both s and p bonds H C H - C C - H benzene H - C C - H C H

19 Introduction Organic compounds that are soluble in polar solvents such as water generally have a polar functional group present in the molecule. An atom or group of atoms that influences the way the molecule functions, reacts or behaves. an atom or group of atoms in a molecule that undergoes predictable chemical reactions the center of reactivity in an organic molecule

20 Introduction Functional groups that contain O or N atoms often lead to a polar organic molecule large difference in electronegativity C vs. O C vs. N Examples of familiar polar organic compounds: glucose acetic acid Vitamin C amino acids Functional groups contain C-O bonds Functional groups contain C-O and C-N bonds

21 Functional Groups Since functional groups are responsible for the many of the chemical and physical properties of organic compounds, we often classify and study organic compounds by the type of functional group present. On your exam, you will be responsible for recognizing and naming the various common functional groups that are found in organic compounds:

22 Functional Groups

23 Functional Groups

24 Functional Groups

25 Functional Groups

26 Functional Groups Example: Name the functional groups that are present in the following compounds: CH3CH2OH O H2C = CHCOH CH3CH2NCH3 CH3

27 Functional Groups Example: Name the functional group(s) that is (are) present in the following compounds: H2C CH2 CH3NHCH2CH2OCH3 O

28 Hydrocarbons Alkanes are often called saturated hydrocarbons
they contain the largest possible number of hydrogen atoms per carbon atom. Alkenes, alkynes, and aromatic hydrocarbons are called unsaturated hydrocarbons they contain less hydrogen than an alkane having the same number of carbon atoms

29 Alkanes Organic compounds can be represented in many different ways:
molecular formula: C4H10 (butane) Lewis structure: Condensed structural formula CH3CH2CH2CH3 Line angle drawings

30 Alkanes Some of the simplest alkanes: You must know these!!!

31 Alkanes Some of the simplest alkanes: You must know these!!!

32 Alkanes The previous alkanes are also called straight-chain hydrocarbons: all of the carbon atoms are joined in a continuous chain Alkanes containing 4 or more carbons can also form branched-chain hydrocarbons (branched hydrocarbons) some of the carbon atoms form a “branch” or side-chain off of the main chain

33 Alkanes An example of a straight chain hydrocarbon:
C5H12 CH3CH2CH2CH2CH3 pentane Examples of a branched hydrocarbon: C5H12 CH3CHCH2CH3 CH3 CH3 CH3CCH3 CH3 2-methylbutane 2,2-dimethylpropane

34 Alkanes The three structures shown previously for C5H12 are structural isomers: compounds with the same molecular formula but different bonding arrangements Structural isomers generally have different properties: different melting points different boiling points often different chemical reactivity

35 Alkanes Alkanes with three or more carbons can also form rings or cycles. Cycloalkanes: Alkanes containing a ring structure that is held together by C – C single bonds Examples: CH2 H2C CH2 cyclopropane

36 Alkanes Examples of cycloalkanes: CH2 H2C CH2 cyclopentane H2C CH2 H2C
cyclohexane

37 Alkanes Organic compounds can be named either using common names or IUPAC names. You must be able to name alkanes, alkenes, alkynes, and alcohols with 10 or fewer carbons in the main chain using the IUPAC naming system.

38 Alkanes Alkane Nomenclature:
Find the longest continuous chain of carbon atoms and use the name of the chain for the base name of the compound: longest chain may not always be written in a straight line 1 2 CH3 - CH - CH3 CH2 - CH2 - CH2 - CH3 Base name: hexane 3 4 5 6

39 Alkanes Alkane Nomenclature:
Number the carbon atoms in the longest chain beginning with the end of the chain closest to a substituent groups attached to the main chain that have taken the place of a hydrogen atom on the main chain 1 A substituent 2 CH3 - CH - CH3 CH2 - CH2 - CH2 - CH3 3 4 5 6

40 Alkanes Alkane Nomenclature:
Name and give the location of each substituent group A substituent group that is formed by removing an H atom from an alkane is called an alkyl group: Name alkyl groups by dropping the “ane” ending of the parent alkane and adding “yl”

41 Alkanes Alkane Nomenclature: Common alkyl groups (substituents):
CH3 methyl CH3CH2 ethyl CH3CH2CH2 propyl CH3CH2CH2CH2 butyl Know these! 1 2 CH3 - CH - CH3 CH2 - CH2 - CH2 - CH3 2-methylhexane 3 4 5 6

42 Alkanes Alkane Nomenclature:
Halogen atoms are another common class of substituents. Name halogen substituents as “halo”: Cl chloro Br bromo I iodo

43 Alkanes Alkane Nomenclature:
When two or more substituents are present, list them in alphabetical order: Butyl vs. ethyl vs. methyl vs. propyl When more than one of the same substituent is present (i.e. two methyl groups), use prefixes to indicate the number: Di = two Tri = three Tetra = four Penta = five Know these.

44 Alkanes Example: Name the following compounds: CH3CH2CHCH2CH3 CH3

45 Alkanes Example: Name the following compounds: CH3CH2CHCH3 CH2CH2Br
Cl

46 Alkanes You must also be able to write the structure of an alkane when given the IUPAC name. To do so: Identify the main chain and draw the carbons in it Identify the substituents (type and #) and attach them to the appropriate carbon atoms on the main chain. Add hydrogen atoms to the carbons to make a total of 4 bonds to each carbon

47 Alkanes Example: Write the condensed structure for the following compounds: 3, 3-dimethylpentane 3-ethyl-2-methylhexane 2-methyl-4-propyloctane 1, 2-dichloro-3-methylheptane

48 Alkenes Alkenes: unsaturated hydrocarbons that contain a C=C double bond Alkene Nomenclature: Names of alkenes are based on the longest continuous chain of carbon atoms that contains the double bond.

49 Alkenes Alkene Nomenclature
Find the longest continuous carbon chain containing the double bond. Change the “ane” ending from the corresponding alkane to “ene” butane butene propane propene octane octene

50 Alkenes Alkene Nomenclature
Indicate the location of the double bond using a prefix number designate the carbon atom that is part of the double bond AND nearest to the end of the chain Name all other substituents in a manner similar to the alkanes. Use a prefix to indicate the geometric isomer present, if necessary.

51 Alkenes Alkene Nomenclature
Different geometric isomers are possible for many alkenes. Compounds that have the same molecular formula and the same groups bonded to each other, but different spatial arrangements of the groups cis isomer trans isomer

52 Alkenes Alkene Nomenclature Cis isomer:
two identical groups (on adjacent carbons) on the same side of the C = C double bond Trans isomer: two identical groups (on adjacent carbons) on opposite sides of the C = C double bond

53 Alkene CH3 CH3 C = C H H CH3 H C = C H CH3 cis-2-butene trans-2-butene

54 Alkene For an alkene with the general formula A P C = C B Q
cis and trans isomers are possible only if A = B and P = Q

55 Alkene Example: Name the following alkenes: CH3CH2 H C = C H H
CH3CHCH2 CH2CH3 CH3

56 Alkenes Example: Draw the structures for the following compounds:
2-chloro-3-methyl-2-butene trans-3, 4-dimethyl-2-pentene cis-6-methyl-3-heptene

57 Alkynes Alkynes: unsaturated hydrocarbons that contain a
C C triple bond Alkyne Nomenclature: Identify the longest continuous chain containing the triple bond To find the base name, change the ending of the corresponding alkane from “ane” to “yne”

58 Alkynes Alkyne Nomenclature:
Use a number to designate the position of the triple bond number from the end of the chain closest to the triple bond just like with alkenes Name substituents like you do with alkanes and alkenes

59 Alkynes Example: Name the following compounds: CH3CH2C CCHCH3 CH2CH3
CH2CH2C CH Cl

60 Alkynes Example: Draw the following alkynes. 4-chloro-2-pentyne
3-propyl-1-hexyne


Download ppt "Organic Chemistry Introduction Functional Groups Alkanes Alkenes"

Similar presentations


Ads by Google