Download presentation

Presentation is loading. Please wait.

Published byAvery Sanchez Modified over 3 years ago

1
MIT 2.71/2.710 Optics 10/25/04 wk8-a-1 The spatial frequency domain

2
MIT 2.71/2.710 Optics 10/25/04 wk8-a-2 Recall: plane wave propagation path delay increases linearly with x plane of observation

3
MIT 2.71/2.710 Optics 10/25/04 wk8-a-3 Spatial frequency angle of propagation? plane of observation electric field

4
MIT 2.71/2.710 Optics 10/25/04 wk8-a-4 Spatial frequency angle of propagation? plane of observation

5
MIT 2.71/2.710 Optics 10/25/04 wk8-a-5 The cross-section of the optical field with the optical axis is a sinusoid of the form Spatial frequency angle of propagation? i.e.it looks like where spatial frequency is called the spatial frequency

6
MIT 2.71/2.710 Optics 10/25/04 wk8-a-6 2D sinusoids

7
MIT 2.71/2.710 Optics 10/25/04 wk8-a-7 2D sinusoids min max

8
MIT 2.71/2.710 Optics 10/25/04 wk8-a-8 2D sinusoids min max

9
MIT 2.71/2.710 Optics 10/25/04 wk8-a-9 2D sinusoids min max

10
MIT 2.71/2.710 Optics 10/25/04 wk8-a-10 Periodic Grating /1: vertical Space domain Frequency (Fourier) domain

11
Periodic Grating /2: tilted Space domain Frequency (Fourier) domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-11

12
Superposition: multiple gratings Space domain Frequency (Fourier) domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-12

13
MIT 2.71/2.710 Optics 10/25/04 wk8-a-13 More superpositions Space domain Frequency (Fourier) domain

14
MIT 2.71/2.710 Optics 10/25/04 wk8-a-14 Size of object vsfrequency content Space domain Frequency (Fourier) domain

15
MIT 2.71/2.710 Optics 10/25/04 wk8-a-15 Superimposing shifted objects Space domain Frequency (Fourier) domain

16
MIT 2.71/2.710 Optics 10/25/04 wk8-a-16 Linear shift invariant systems in the time domain

17
MIT 2.71/2.710 Optics 10/25/04 wk8-a-17 Linear shift invariant systems

18
MIT 2.71/2.710 Optics 10/25/04 wk8-a-18 Linear shift invariant systems impulse excitation shift invariance

19
MIT 2.71/2.710 Optics 10/25/04 wk8-a-19 Linear shift invariant systems impulse excitation linearity

20
MIT 2.71/2.710 Optics 10/25/04 wk8-a-20 Linear shift invariant systems arbitrary sifting property of the δ-functionconvolution integral

21
MIT 2.71/2.710 Optics 10/25/04 wk8-a-21 Linear shift invariant systems sinusoid attenuation phase delay transfer function same frequency

22
MIT 2.71/2.710 Optics 10/25/04 wk8-a-22 From time to frequency: Fourier analysis Can I express an arbitrary g(t) as a superposition of sinusoids?

23
MIT 2.71/2.710 Optics 10/25/04 wk8-a-23 The Fourier integral inverse Fourier transform (aka inverse Fourier transform) superposition sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids

24
MIT 2.71/2.710 Optics 10/25/04 wk8-a-24 The Fourier transform The complex weight coefficients G(ν), akaFourier transform Fourier transform of g(t) are calculated from the integral

25
MIT 2.71/2.710 Optics 10/25/04 wk8-a-25 Fourier transform pairs

26
MIT 2.71/2.710 Optics 10/25/04 wk8-a-26 2Dpairs 2D Fourier transform pairs Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14)

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google