Download presentation

Presentation is loading. Please wait.

Published byAvery Sanchez Modified over 3 years ago

1
MIT 2.71/2.710 Optics 10/25/04 wk8-a-1 The spatial frequency domain

2
MIT 2.71/2.710 Optics 10/25/04 wk8-a-2 Recall: plane wave propagation path delay increases linearly with x plane of observation

3
MIT 2.71/2.710 Optics 10/25/04 wk8-a-3 Spatial frequency angle of propagation? plane of observation electric field

4
MIT 2.71/2.710 Optics 10/25/04 wk8-a-4 Spatial frequency angle of propagation? plane of observation

5
MIT 2.71/2.710 Optics 10/25/04 wk8-a-5 The cross-section of the optical field with the optical axis is a sinusoid of the form Spatial frequency angle of propagation? i.e.it looks like where spatial frequency is called the spatial frequency

6
MIT 2.71/2.710 Optics 10/25/04 wk8-a-6 2D sinusoids

7
MIT 2.71/2.710 Optics 10/25/04 wk8-a-7 2D sinusoids min max

8
MIT 2.71/2.710 Optics 10/25/04 wk8-a-8 2D sinusoids min max

9
MIT 2.71/2.710 Optics 10/25/04 wk8-a-9 2D sinusoids min max

10
MIT 2.71/2.710 Optics 10/25/04 wk8-a-10 Periodic Grating /1: vertical Space domain Frequency (Fourier) domain

11
Periodic Grating /2: tilted Space domain Frequency (Fourier) domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-11

12
Superposition: multiple gratings Space domain Frequency (Fourier) domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-12

13
MIT 2.71/2.710 Optics 10/25/04 wk8-a-13 More superpositions Space domain Frequency (Fourier) domain

14
MIT 2.71/2.710 Optics 10/25/04 wk8-a-14 Size of object vsfrequency content Space domain Frequency (Fourier) domain

15
MIT 2.71/2.710 Optics 10/25/04 wk8-a-15 Superimposing shifted objects Space domain Frequency (Fourier) domain

16
MIT 2.71/2.710 Optics 10/25/04 wk8-a-16 Linear shift invariant systems in the time domain

17
MIT 2.71/2.710 Optics 10/25/04 wk8-a-17 Linear shift invariant systems

18
MIT 2.71/2.710 Optics 10/25/04 wk8-a-18 Linear shift invariant systems impulse excitation shift invariance

19
MIT 2.71/2.710 Optics 10/25/04 wk8-a-19 Linear shift invariant systems impulse excitation linearity

20
MIT 2.71/2.710 Optics 10/25/04 wk8-a-20 Linear shift invariant systems arbitrary sifting property of the δ-functionconvolution integral

21
MIT 2.71/2.710 Optics 10/25/04 wk8-a-21 Linear shift invariant systems sinusoid attenuation phase delay transfer function same frequency

22
MIT 2.71/2.710 Optics 10/25/04 wk8-a-22 From time to frequency: Fourier analysis Can I express an arbitrary g(t) as a superposition of sinusoids?

23
MIT 2.71/2.710 Optics 10/25/04 wk8-a-23 The Fourier integral inverse Fourier transform (aka inverse Fourier transform) superposition sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids

24
MIT 2.71/2.710 Optics 10/25/04 wk8-a-24 The Fourier transform The complex weight coefficients G(ν), akaFourier transform Fourier transform of g(t) are calculated from the integral

25
MIT 2.71/2.710 Optics 10/25/04 wk8-a-25 Fourier transform pairs

26
MIT 2.71/2.710 Optics 10/25/04 wk8-a-26 2Dpairs 2D Fourier transform pairs Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14)

Similar presentations

OK

MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.

MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on pierre de fermat Ppt on city life and village life Ppt on endangered species of birds Ppt on satellite orbit chart Memory games for kids ppt on batteries Ppt on 2 stroke ic engine efficiency Download ppt on biodiversity in india Ppt on coalition government define Ppt on the book the secret Ppt on ufo and aliens history