Download presentation

Presentation is loading. Please wait.

Published byKatherine Woodward Modified over 3 years ago

1
**The imaging problem object imaging optics (lenses, etc.) image**

MIT 2.71/2.710 Optics 10/27/04 wk8-b-1

2
**The imaging problem Illumination (coherent vs incoherent) image object**

imaging optics (lenses, etc.) free space free space MIT 2.71/2.710 Optics 10/27/04 wk8-b-2

3
**(spatial) linear shift-invariant system**

The imaging problem Illumination (coherent vs incoherent) image object (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-3

4
**(spatial) linear shift-invariant system**

The imaging problem image object (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-4

5
Our approach • Today: – linear shift invariant (LSI) systems in the space/spatial frequency domains – mathematical properties of Fourier transforms • Monday: – free space propagation: Fresnel and Fraunhofer diffraction • Wednesday: – examples of Fraunhofer diffraction: amplitude and phase diffraction gratings – wave description of light propagation through a lens – Fourier transformation and imaging using lenses MIT 2.71/2.710 Optics 10/27/04 wk8-b-5

6
Spatial filtering MIT 2.71/2.710 Optics 10/27/04 wk8-b-6

7
**Spatial frequency representation (aka spatial frequency domain)**

space domain 3 sinusoids Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-7

8
**Spatial frequency removal (aka spatial frequency domain)**

space domain 2 sinusoids (1 removed) Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-8

9
**From space to spatial frequency:**

2D Fourier analysis Can I express an arbitrary g(x,y) as a superposition of sinusoids? MIT 2.71/2.710 Optics 10/27/04 wk8-b-9 ... etc. ...

10
**(aka spatial frequency domain)**

Spatial frequency representation Fourier domain (aka spatial frequency domain) space domain g(x,y) MIT 2.71/2.710 Optics 10/27/04 wk8-b-10

11
**(aka spatial frequency domain)**

Low-pass filtering removed high-frequency content Fourier domain (aka spatial frequency domain) space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-11

12
**removed high-and low-frequency content (aka spatial frequency domain)**

Band-pass filtering removed high-and low-frequency content Fourier domain (aka spatial frequency domain) space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-12

13
**Example: optical lithography**

Original nested Ls mild low-pass filtering Notice: (i) blurring at the edges (ii) ringing original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-13

14
**Example: optical lithography**

Original nested Ls severe low-pass filtering Notice: (i) blurring at the edges (ii) ringing original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-14

15
**The 2D Fourier integral (aka inverse Fourier transform) superposition**

sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids MIT 2.71/2.710 Optics 10/27/04 wk8-b-15

16
**The 2D Fourier integral The complex weight coefficients G(u,v),**

Aka Fourier transform of g(x,y) are calculated from the integral (1D so we can draw it easily ... ) MIT 2.71/2.710 Optics 10/27/04 wk8-b-16

17
**2D Fourier transform pairs**

Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14) MIT 2.71/2.710 Optics 10/27/04 wk8-b-17

18
**Space and spatial frequency representations SPATIAL FREQUENCY DOMAIN**

SPACE DOMAIN 2D Fourier transform 2D Fourier integral aka inverse 2D Fourier transform SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-18

19
**Fourier transform properties /1**

•Fourier transforms and the delta function •Linearity of Fourier transforms if and then for any pair of complex numbers MIT 2.71/2.710 Optics 10/27/04 wk8-b-19

20
**Fourier transform properties /2**

Let Shift theorem (space →frequency) Shift theorem (frequency →space) Scaling theorem MIT 2.71/2.710 Optics 10/27/04 wk8-b-20

21
**Fourier transform properties /3**

Let and Let Convolution theorem (space →frequency) Let Convolution theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-21

22
**Fourier transform properties /4**

Let and Let Correlation theorem (space →frequency) Let Correlation theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-22

23
**2D linear shift invariant systems**

input output convolution with impulse response Fourier transform transform Inverse Fourier multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-23

24
**2D linear shift invariant systems**

SPACE DOMAIN input output convolution with impulse response Fourier transform transform Inverse Fourier multiplication with transfer function SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-24

25
**2D linear shift invariant systems**

input output convolution with impulse response Fourier transform transform Inverse Fourier are pair multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-25

26
**Sampling space and frequency**

pixel size frequency resolution space domain spatial frequency domain field size Nyquist relationships: MIT 2.71/2.710 Optics 10/27/04 wk8-b-26

27
**The Space–Bandwidth Product Nyquist relationships:**

from space → spatial frequency domain: from spatial frequency → space domain: : 1D Space–Bandwidth Product (SBP) aka number of pixels in the space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-27

28
**(aka spatial frequency domain)**

SBP: example space domain Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-28

Similar presentations

OK

Today • Diffraction from periodic transparencies: gratings

Today • Diffraction from periodic transparencies: gratings

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on free space optical communication link Ppt on cross-site scripting vulnerabilities Ppt on construction maths for class 10th Ppt on buddhism and jainism Ppt on congruence of triangles class 8 Ppt on musical instruments in hindi Imod display ppt online Ppt on power generation using footsteps dance Ppt on exchange rate system Ppt on event driven programming advantages