Download presentation

Published byKatherine Woodward Modified over 5 years ago

1
**The imaging problem object imaging optics (lenses, etc.) image**

MIT 2.71/2.710 Optics 10/27/04 wk8-b-1

2
**The imaging problem Illumination (coherent vs incoherent) image object**

imaging optics (lenses, etc.) free space free space MIT 2.71/2.710 Optics 10/27/04 wk8-b-2

3
**(spatial) linear shift-invariant system**

The imaging problem Illumination (coherent vs incoherent) image object (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-3

4
**(spatial) linear shift-invariant system**

The imaging problem image object (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-4

5
Our approach • Today: – linear shift invariant (LSI) systems in the space/spatial frequency domains – mathematical properties of Fourier transforms • Monday: – free space propagation: Fresnel and Fraunhofer diffraction • Wednesday: – examples of Fraunhofer diffraction: amplitude and phase diffraction gratings – wave description of light propagation through a lens – Fourier transformation and imaging using lenses MIT 2.71/2.710 Optics 10/27/04 wk8-b-5

6
Spatial filtering MIT 2.71/2.710 Optics 10/27/04 wk8-b-6

7
**Spatial frequency representation (aka spatial frequency domain)**

space domain 3 sinusoids Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-7

8
**Spatial frequency removal (aka spatial frequency domain)**

space domain 2 sinusoids (1 removed) Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-8

9
**From space to spatial frequency:**

2D Fourier analysis Can I express an arbitrary g(x,y) as a superposition of sinusoids? MIT 2.71/2.710 Optics 10/27/04 wk8-b-9 ... etc. ...

10
**(aka spatial frequency domain)**

Spatial frequency representation Fourier domain (aka spatial frequency domain) space domain g(x,y) MIT 2.71/2.710 Optics 10/27/04 wk8-b-10

11
**(aka spatial frequency domain)**

Low-pass filtering removed high-frequency content Fourier domain (aka spatial frequency domain) space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-11

12
**removed high-and low-frequency content (aka spatial frequency domain)**

Band-pass filtering removed high-and low-frequency content Fourier domain (aka spatial frequency domain) space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-12

13
**Example: optical lithography**

Original nested Ls mild low-pass filtering Notice: (i) blurring at the edges (ii) ringing original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-13

14
**Example: optical lithography**

Original nested Ls severe low-pass filtering Notice: (i) blurring at the edges (ii) ringing original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-14

15
**The 2D Fourier integral (aka inverse Fourier transform) superposition**

sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids MIT 2.71/2.710 Optics 10/27/04 wk8-b-15

16
**The 2D Fourier integral The complex weight coefficients G(u,v),**

Aka Fourier transform of g(x,y) are calculated from the integral (1D so we can draw it easily ... ) MIT 2.71/2.710 Optics 10/27/04 wk8-b-16

17
**2D Fourier transform pairs**

Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14) MIT 2.71/2.710 Optics 10/27/04 wk8-b-17

18
**Space and spatial frequency representations SPATIAL FREQUENCY DOMAIN**

SPACE DOMAIN 2D Fourier transform 2D Fourier integral aka inverse 2D Fourier transform SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-18

19
**Fourier transform properties /1**

•Fourier transforms and the delta function •Linearity of Fourier transforms if and then for any pair of complex numbers MIT 2.71/2.710 Optics 10/27/04 wk8-b-19

20
**Fourier transform properties /2**

Let Shift theorem (space →frequency) Shift theorem (frequency →space) Scaling theorem MIT 2.71/2.710 Optics 10/27/04 wk8-b-20

21
**Fourier transform properties /3**

Let and Let Convolution theorem (space →frequency) Let Convolution theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-21

22
**Fourier transform properties /4**

Let and Let Correlation theorem (space →frequency) Let Correlation theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-22

23
**2D linear shift invariant systems**

input output convolution with impulse response Fourier transform transform Inverse Fourier multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-23

24
**2D linear shift invariant systems**

SPACE DOMAIN input output convolution with impulse response Fourier transform transform Inverse Fourier multiplication with transfer function SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-24

25
**2D linear shift invariant systems**

input output convolution with impulse response Fourier transform transform Inverse Fourier are pair multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-25

26
**Sampling space and frequency**

pixel size frequency resolution space domain spatial frequency domain field size Nyquist relationships: MIT 2.71/2.710 Optics 10/27/04 wk8-b-26

27
**The Space–Bandwidth Product Nyquist relationships:**

from space → spatial frequency domain: from spatial frequency → space domain: : 1D Space–Bandwidth Product (SBP) aka number of pixels in the space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-27

28
**(aka spatial frequency domain)**

SBP: example space domain Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-28

Similar presentations

Presentation is loading. Please wait....

OK

Advanced Piloting Cruise Plot.

Advanced Piloting Cruise Plot.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google