Presentation is loading. Please wait.

Presentation is loading. Please wait.

Surface Adhesion (Adsorption) in LBM. Key Papers Martys, N. and H. Chen, 1996, PRE 53, 743- 750 Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen,

Similar presentations


Presentation on theme: "Surface Adhesion (Adsorption) in LBM. Key Papers Martys, N. and H. Chen, 1996, PRE 53, 743- 750 Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen,"— Presentation transcript:

1 Surface Adhesion (Adsorption) in LBM

2 Key Papers Martys, N. and H. Chen, 1996, PRE 53, 743- 750 Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen, 2000, Comp. Materials Sci. 18, 7 – 12

3 Key Books Adamson, A. W., and A.P. Gast, Physical Chemistry of Surfaces, New York, John Wiley & Sons, Inc., 1997. Israelachvili, J. N., Intermolecular and Surface Forces, 2nd ed. Academic Press, London, 1992.

4 Wetting http://www.hdm-stuttgart.de/projekte/printing-inks/b_sel42.jpg

5 Wetting http://psii.kist.re.kr/Teams/psii/research/Con_4.jpg

6 Geometrically-controlled Superhydrophobic surfaces http://www.nature.com/nmat/journal/v1/n1/images/nmat715-f1.jpg

7 LBM Adhesive Force Formula s is a ‘switch’ that takes on value 1 if the site at x + e a  t is a solid and is 0 otherwise We seem to have flexibility in the choice of the pre-sum factor; the papers cited use  or 

8 Computation of  // Compute psi, Eq. (61). for( j=0; j<LY; j++) for( i=0; i<LX; i++) if( !is_solid_node[j][i]) { psi[j][i] = 4.*exp( -200. / ( rho[j][i])); }

9 Sforce // Compute interaction force, Eq. (66). for( j=0; j<LY; j++) { jp = ( j<LY-1)?( j+1):( 0 ); jn = ( j>0 )?( j-1):( LY-1); for( i=0; i<LX; i++) { ip = ( i<LX-1)?( i+1):( 0 ); in = ( i>0 )?( i-1):( LX-1); if( !is_solid_node[j][i]) { sum_x=0.; sum_y=0.; if( is_solid_node[j ][ip]) // neighbor 1 { sum_x = sum_x + WM*ex[1]; sum_y = sum_y + WM*ey[1]; } if( is_solid_node[jp][i ]) // neighbor 2 { sum_x = sum_x + WM*ex[2]; sum_y = sum_y + WM*ey[2]; } if( is_solid_node[j ][in]) // neighbor 3 { sum_x = sum_x + WM*ex[3]; sum_y = sum_y + WM*ey[3]; }

10 Sforce if( is_solid_node[jn][i ]) // neighbor 4 { sum_x = sum_x + WM*ex[4]; sum_y = sum_y + WM*ey[4]; } if( is_solid_node[jp][ip]) // neighbor 5 { sum_x = sum_x + WD*ex[5]; sum_y = sum_y + WD*ey[5]; } if( is_solid_node[jp][in]) // neighbor 6 { sum_x = sum_x + WD*ex[6]; sum_y = sum_y + WD*ey[6]; } if( is_solid_node[jn][in]) // neighbor 7 { sum_x = sum_x + WD*ex[7]; sum_y = sum_y + WD*ey[7]; } if( is_solid_node[jn][ip]) // neighbor 8 { sum_x = sum_x + WD*ex[8]; sum_y = sum_y + WD*ey[8]; } sforce_x[j][i] = -Gads * psi[j][i] * sum_x; sforce_y[j][i] = -Gads * psi[j][i] * sum_y; }

11 Contact Angles in SCMP LBM Interplay between these forces will determine wetting Cohesive force: Adhesive force:

12 Young’s Equation?

13 Contact Angles in SCMP LBM Assume uniform liquid or vapor surroundings:

14 Contact Angles in LBM Assume uniform surroundings: LiquidVapor

15 Contact Angles in LBM Assume uniform surroundings: Liquid surrounded by solidVapor surrounded by solid

16 Contact Angles in LBM Zero degree contact angle: –Adhesive force equal to cohesive force for liquid Liquid surrounded by solidLiquid

17 Contact Angles in LBM 180 degree contact angle: –Adhesive force on vapor equal to cohesive force for vapor Vapor surrounded by solidVapor

18 Contact Angles in LBM 90 degree contact angle: –Adhesive force on vapor equal to cohesive force for ‘interface’  (= [  l +  v  ) Interface surrounded by solidInterface

19 Adsorption A svl : Hamaker constant for interaction of solid with vapor through liquid  : Disjoining pressure (P relative to flat, free interface)

20 Adsorption  vap =85.7  vap =85.7857  vap =86.1285

21 Capillary Condensation A vll : Hamaker constant for interaction of liquid with liquid through vapor  : Disjoining pressure (P relative to flat, free interface)

22 Capillary Condensation  vap =86.557

23 Adsorption/Capillary Condensation

24 Hysteretic Wetting/Drying of Angular Pores (Tuller, Or, and Dudley,1999 WRR) Saturation as a function of p at high tension Drainage radius Imbibition radius Shape factor Young-Laplace (zero contact angle) Filled cross-sectional area p as a function of saturation at high tension

25 Hysteretic Wetting and Drying

26

27 Hysteritic Wetting and Drying

28 Invasion Percolation

29 Capillary Number v inlet/outlet velocity  viscosity of injected fluid n porosity  interfacial tension between fluids  contact angle Friedman, 1999. J. Adhesion Sci Technol. 13(12), 1495-1518.

30 Pore Selection and Impact of Ca on Pore Penetration 2,500 ts/movie step r = 7.5 r = 6.5 r = 5 v  10 -3 Ca  2 x 10 -4 v  10 -4 Ca  2 x 10 -5

31 Viscosity Ratio For D2Q9 LBM:

32 Phase Diagram Lenormand et al. 1988. J. Fluid Mech. 189, 165-187. Air/Viscous OilGlucose Soln./ Oil Air/Viscous Oil

33 Frette et al., 1997. PRE 55(3) 2969-2975. Viscosity-Matched Fluids Monolayer of 0.7 mm beads

34 No Gravity Gravity Drainage and gravity stabilization


Download ppt "Surface Adhesion (Adsorption) in LBM. Key Papers Martys, N. and H. Chen, 1996, PRE 53, 743- 750 Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen,"

Similar presentations


Ads by Google