Presentation is loading. Please wait.

Presentation is loading. Please wait.

November 2004 Beta Iron Disilicide (  -FeSi 2 ) As an Environmentally Friendly Semiconductor for Space Use 1.Kankyo Semiconductors Co., Ltd. 2.Nippon.

Similar presentations


Presentation on theme: "November 2004 Beta Iron Disilicide (  -FeSi 2 ) As an Environmentally Friendly Semiconductor for Space Use 1.Kankyo Semiconductors Co., Ltd. 2.Nippon."— Presentation transcript:

1 November 2004 Beta Iron Disilicide (  -FeSi 2 ) As an Environmentally Friendly Semiconductor for Space Use 1.Kankyo Semiconductors Co., Ltd. 2.Nippon Institute of Technology 3.National Institute of Advanced Industrial Science and Technology NI-AIST Central-2, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568 Japan 1 Yunosuke MAKITA, 1 Zhengxin LIU, 1 Teruhisa OOTSUKA, 1 Naotaka OTOGAWA, 1 Masato OSAMURA, 1 Yasuhiro FUKUZAWA, 2 Ryo KURODA, 1 Yasuhiko NAKAYAMA, 2 Yasuyuki HOSHINO, 3 Hisao TANOUE

2 Abundance of chemical elements in the earth’s crust  -FeSi 2

3 Log C (C=mole/ton Seawater) Log C (C=mole/ton Animal Liver Tissue) Contents of chemical elements in animal liver tissue and seawater

4 Comparison of  -FeSi 2 with Si and GaAs as a photovoltaic semiconductor for space use  -FeSi 2 c-SiGaAs Band-gap (eV)0.851.111.43 Optical absorption coefficient (cm -1 )>10 5 10 3 -10 4 10 4 Theoretical Conversion Efficiency (%)16-232425 Thickness required for solar cell (  m) 130010 Specific gravity (g/cm 3 )4.932.335.33 Payload (relative value)11/1501/5 Resistance against the exposition of cosmic rays & radiation HighLow Thermal stability ( o C)9371000500 Mobility (cm 2 /Vs) (at 300K) Electron 17,000 at 77K (10 16 cm -3 ) 13505-8,000 Hole 3,800 at 77K (10 16 cm -3 ) 480300

5  -FeSi Fe 5 Si 3 Fe 2 Si Fe-Si compounds Fe 3 Si Semiconductor  -FeSi 2 Properties and possible applications of  -FeSi 2 Light emitting diode (LED) Photosensor for quartz fiber communication (1.5  m) ・ Direct band gap: E g = 0.85 eV ・ Optical absorption coefficient: > 10 5 cm -1 ・ Thermoelectric power >10 -4 K -1 ・ No-toxicity and abundance of the constituent chemical elements (Fe, Si) Thin film solar cell Thermoelectric generator Environmentally friendly semiconductor Metallic  -Fe 2 Si 5

6 Bright future of  -FeSi 2

7 a b c Si(100) Si(001) 5.43Å  -FeSi 2 (100) b c 2.0 % 1.4 % Si(111) 7.68Å a b (or c) 1.4% (2.0) 5.3%  -FeSi 2 (101)/(110) Si(111) Crystal structure of  -FeSi 2 Possible epitaxial growth on Si Crystal structure: orthorhombic (Cmca) a=9.86Å, b=7.79Å, c=7.83Å

8 Fe Si Electron empty space Electronic density distribution map of  -FeSi 2 measured by 4-axis X-ray diffractometer and calculated by MEM Owing to a large volume of electron empty space,  -FeSi 2 has high resistance against the exposition of cosmic rays and radiation.

9 40 50 60 70 80 90 100 1700 Temperature ( o C) Metallic  -Fe 2 Si 5 Semiconductor  -FeSi 2 +ε +ε +ε +ε  +Si α+Si α+Si α+εα+εα+εα+ε ε 1212 o C 982 o C 1414 o C 1207 o C 937 o C 1410 o C 1500 1300 1100 900 700 500 Fe Si/Fe Ratio (%) Si Fe-Si phase diagram Possibility of transforming semiconductor  -FeSi 2 into metallic  -Fe 2 Si 5 by laser heating Metallic  -Fe 2 Si 5 can be used as a deposition- and step-free electrode for  -FeSi 2 devices.

10 2. High optical absorption coefficient (>1  10 5 cm -1 ). 1. A large volume of electron empty space. 3. Semiconductor  -FeSi 2 to metallic  -Fe 2 Si 5 phase transformation by laser heating. 4. Growth on stainless steel substrate. Advantages of  -FeSi 2 as a photovoltaic semiconductor for space use Small electronic density cross-sectional area, High resistance against the exposure of cosmic rays and radiation. Thin film solar cell (thinner than 1  m), Elevation of payload. Use of metallic  -Fe 2 Si 5 as a deposition- and step-free electrode, Improvement of mechanical strength, High reliability at elevated temperatures, Elevation of payload. High resistance against cosmic rays and radiation, Elimination of thick Si substrates, Elevation of payload.

11 Pole figure of (202)/(220) peak  (010)/(001)  (101)/(110) Si(110) Si(111)  -FeSi 2 (110) or (101)//Si(111) Epitaxial relationship XRD spectrum XRD measurements for  -FeSi 2 films grown on Si(111) substrates

12  -FeSi 2 Si Cross-sectional TEM image and diffraction patterns  (220)  (020)  (200) Si(002) - Si(111) -- - Si  -FeSi 2 TEM images of  -FeSi 2 films grown on Si(111) substrates Si(111)  (110)/(101) 0.94nm High resolution TEM image Interface

13 IVaVaVIaVIIaVIII IbIIbIIIbIVbVb BCN Al Si P TiVCrMn Fe CoNiCuZnGaGeAs ZrNbMoTcRuRhPdAgCdInSnSb HfTaWReOsIrPtAuHgTlPbBi p-type n-type ・ Substitution at two Fe sites ・ Doping efficiency is very low: ~ several atm % ・ Formation of undesired silicides: MnSi 1.7, CoSi 2, CrSi 2, NiSi 2 etc. ・ High residual carrier concentrations: ~ 10 20 cm - 3 Low mobilities: < 10 cm 2 /Vs Dopants used in thermoelectric devices Possible dopants on Si site ・ Substitution at Si sites. ・ Established doping technologies for Si device manufacturing can be used. ・ Expecting high doping efficiencies with low carrier concentrations and high Hall mobilities Impurity doping technologies for  -FeSi 2 bulks and thin films

14 Boron-doping for p-type  -FeSi 2 films Effective doping of boron atoms for p-type  -FeSi 2 films

15 Arsenic-doping for n-type  -FeSi 2 films Effective doping of arsenic atoms for n-type  -FeSi 2 films

16 SiSi 200nm 100nm n-Si  FeSi 2 Laser light (110) (001) (111)  -Fe 2 Si 5  -FeSi 2 (130) (515) - - - (425) - ‐  -FeSi 2 Metallic  -Fe 2 Si 5 Process image  - FeSi 2 Metal  -Fe 2 Si 5 electrode Surface image Phase-transformation from  -FeSi 2 to  -Fe 2 Si 5 by laser heating Locally phase-transformed  -Fe 2 Si 5 can be used as a delineated metal contact

17 Ohmic contact between  -FeSi 2 &  ‐ Fe 2 Si 5 Phase-transformed  -Fe 2 Si 5 used as an electrode for  -FeSi 2 devices Metallic  -Fe 2 Si 5 can be used as an electrode for  -FeSi 2 devices 1mm 5mm n-Si A  -Fe 2 Si 5 p-  -FeSi 2 I-V measurement for a p-  -FeSi 2 /n-Si heterojunction device A p-  -FeSi 2  -Fe 2 Si 5 1mm 5mm n-Si

18 I-V Curve under sun light p-Si n-  -FeSi 2 (0.3  m) Electrode Light A Area: 4x4 mm 2 Back electrode Cell structure n-  -FeSi 2 /p-Si heterojunction solar cell

19 Semiconductor  -FeSi 2 thin films grow on stainless steel substrates XRD spectrum Raman spectrum SEM surface image Formation of  -FeSi 2 films on stainless steel substrates

20 Stainless steel Buffer layer n-  -FeSi 2  -Fe 2 Si 5 electrode p-  -FeSi 2 Structure 1 Wide-gap semiconductors (e. x., ZnO, CuAlO 2, etc.) Stainless steel p-  -FeSi 2 Metal electrode Structure 2  -FeSi 2 solar cells under development

21 2. High optical absorption coefficient (>1  10 5 cm -1 ). 1. A large volume of electron empty space. 3. Semiconductor  -FeSi 2 to metallic  -Fe 2 Si 5 phase transformation by laser heating. 4. Growth on stainless steel substrate. Summary  -FeSi 2 as a semiconductor for space-use solar cell Small electronic density cross-sectional area, High resistance against the exposure of cosmic rays and radiation. Thin film solar cell (thinner than 1  m), Elevation of payload. Use of metallic  -Fe 2 Si 5 as a deposition- and step-free electrode, Improvement of mechanical strength, High reliability at elevated temperatures, Elevation of payload. High resistance against cosmic rays and radiation, Elimination of thick Si substrates, Elevation of payload.

22 Bright future of  -FeSi 2


Download ppt "November 2004 Beta Iron Disilicide (  -FeSi 2 ) As an Environmentally Friendly Semiconductor for Space Use 1.Kankyo Semiconductors Co., Ltd. 2.Nippon."

Similar presentations


Ads by Google