Download presentation

Presentation is loading. Please wait.

Published byJesus Porter Modified over 4 years ago

1
Nonlinear Precoding for ISI Channels Frederick Lee Stanford University October 21, 2004 AIM Workshop on Time-Reversal Communications in Richly Scattering Environments

2
H(z) wkwk ykyk nknk ŵkŵk H(z) - 1 - Rx: ZF-LE Motivation of ZF-THP (1) whitened matched filtered channel (causal & minimum-phase) Problem: Noise Enhancement

3
H(z) wkwk ykyk nknk ŵkŵk H(z) - 1 - Rx: ZF-DFE Motivation of ZF-THP (2) Problem: Error Propagation

4
Tx: ZF-LE H(z) H(z) - 1 wkwk xkxk ykyk nknk ŵkŵk - Motivation of ZF-THP (3) Problem: Increase in average & peak power of x k

5
Motivation of ZF-THP (4) Power of x k only increases slightly after modulo operator H(z) H(z) - 1 Mod wkwk xkxk ykyk nknk ŵkŵk - zkzk

6
ZF-THP: 1-D Constellation (1) 13M-1-M+1 -3 M-ary PAM w k - z k wkwk xkxk H(z) - 1 Mod 2M wkwk xkxk - H(z) - 1 wkwk xkxk - vkvk akak zkzk zkzk (some integral multiple of 2M)

7
ZF-THP: 1-D Constellation (2) 13M-1-M+1 -3 Extended signal set V w k - z k wkwk xkxk ykyk H(z) ykyk nknk Mod ŵkŵk H(z) - 1 wkwk xkxk - vkvk akak

8
ZF-THP: 2-D Constellation (1) H(z) - 1 Mod w k I + jw k Q - x k I + jx k Q u k I + ju k Q ukIukI Mod 2M ukQukQ xkIxkI xkQxkQ j Mod x k I + jx k Q u k I + ju k Q Square QAM = (M-ary PAM) 2

9
ZF-THP: 2-D Constellation (2) 16-QAM

10
ZF-THP: 2-D Constellation (3) Construct a 2-D lattice = {k 1 v 1 + k 2 v 2 }, where v 1, v 2 are linearly independent vectors & k 1, k 2 are integers Find a region R such that R+ fills up entire 2-D space with no gap

11
ZF-THP: 2-D Constellation (4)

12
ZF-FLP (1) (Assume f k 2 ) H(z) - 1 w k = x k ykyk nknk ŵkŵk fkfk H(z) - 1 - k vkvk (w k 2 )

13
ZF-FLP (2) v1v1 v2v2 Voronoi region w k = f k = v k = y k =

14
ZF-FLP (3) H(z) - 1 wkwk xkxk ykyk nknk ŵkŵk - fkfk mkmk - k x'kx'k vkvk

15
ZF-FLP (4) v1v1 v2v2 Voronoi region w k = f k = v k = y k = x k = x' k =

16
ZF-FLP (5) H(z) H(z) - 1 wkwk xkxk ykyk nknk ŵkŵk - Mod fkfk mkmk H(z) - 1 - k x'kx'k

17
Comparisons of THP and FLP THP Dependent on boundary region R and constellation size No restrictions for channels with spectral zeros FLP Dependent on signal lattice (Independent of R and constellation size) Receiver filter unstable for channels with spectral zeros, which leads to error propagation

18
Performance Example Source: R. Fischer & J. Huber, Comparison of precoding schemes for digital subscriber lines, IEEE Trans. Commun., Mar. 1997

19
THP for Multi-User Broadcasting Channels s1's1' mod I - B HF sK'sK' mod n x y1y1 yKyK... mod sksk Element-Wise Operation Feedback Filter (Triangular) Channel (Flat or ISI) Feedforward Filter Joint (vector/matrix) processing at BSIndividual (scalar) processing for each user

Similar presentations

Presentation is loading. Please wait....

OK

Combined Linear & Constant Envelope Modulation

Combined Linear & Constant Envelope Modulation

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google