Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Shortest Path Bridging IEEE 802.1aq Overview Don Fedyk Janos Farkas Mick Seaman

Similar presentations


Presentation on theme: "1 Shortest Path Bridging IEEE 802.1aq Overview Don Fedyk Janos Farkas Mick Seaman"— Presentation transcript:

1 1 Shortest Path Bridging IEEE 802.1aq Overview Don Fedyk Janos Farkas Mick Seaman Peter Ashwood-Smith IEEE Interim San Diego July 14th 2010

2 2 Acknowledgments Nigel Bragg Guoli Yin Paul Unbehagen David Allan Authors, Editors and contributors have all have many many years in the industry working in Ethernet, IP, MPLS, ATM, X.25, multiple Standards Bodies

3 3 Outline Project scope and introduction Requirements SPB mechanisms SPBV SPBM Applications Examples References

4 4 Outline Project scope and introduction Requirements SPB mechanisms SPBV SPBM Applications Examples References

5 5 Ethernet Bridging is successful but ROOT SOURCE DEST Need a modern control plane address Arbitrary LANS A1.. A LEARN A1..A100

6 6 Load Sharing - Visually All links usable Animation Courtesy of Guoli Yin - Huawei

7 7 SPB Challenges L2 networks that scale. Use of arbitrary mesh topologies. Use of (multiple) shortest paths. Efficient broadcast/multicast routing and replication points. Avoid address learning by tandem devices. Get recovery times into 100s of millisecond range for larger topologies. Good scaling without loops. Allow creation of very many logical L2 topologies (subnets) of arbitrary span. Maintain all L2 properties within the logical L2 topologies (transparency, ordering, symmetry, congruence, shortest path etc). Reuse all existing Ethernet OA&M 802.1ag/Y.1731 But Moores law and technology trends are on our side!

8 8 How does it work? From Operators Perspective –Plug NNIs together –Group ports/c-vlan/s-vlan at UNIs that you want to bridge (224 groups=services SPBM mode.) –Assign an I-SID to each group.. Internally Use IS-IS !!! –IS-IS reads box MAC, forms NNI adjacencies –IS-IS advertises box MACs (so no config). –IS-IS reads UNI port services and advertises. –Computations produce FIBs that bridge service members.

9 9 Pushing Scale in Flat networks SPBV SPBM Metro Core Network Reliability Auto-discovery Load sharing Managed addresses Access Network Reliability Bandwidth efficiency Unknown or managed addresses Enterprise Network Plug & Play Easy to operate Unknown addresses MAC learning in data plane MAC learning in control plane IEEE 802.1aq VLANS Data Center Using the project numbers (one SPBM Domain of 1000 nodes) Easily address Millions of devices Why? Orthogonal Address, Service and Topology

10 10 SPT Region MST Region Orthogonal Topology Common Spanning Tree (CST) Internal Spanning Tree (IST) Common and Internal Spanning Tree RSTP bridges SPT Region IST MST Region IST CST

11 11 Orthogonal Service and Address It is a very good Data Plane! Standard Approved 1998 B-VID I-TAG B-TAG B-DA B-SA DA SA Ethertype C-VID Ethertype Q-TAG DA SA C-VID S-VID Ethertype C-TAG S-TAG DA SA I-SID Ethertype S-TAG DA SA S-VID C-TAG C-VID Ethernet Provider Backbone Bridges 802.1ah Provider Bridges 802.1ad Ethernet VLAN Encapsulation for virtualization is important in many networks Consistent Forwarding

12 12 SPBM Multicast Addresses The SPBM Trifecta By constructing local IEEE Multicast Addresses the Control Plane has complete flexibility to build multicast trees. Computation, Source Identification, Service Identification

13 13 Congruency Shortest path between any two points is both the same and symmetrical for unicast and multicast B C D E F G I J Bridge A Same Forward and Reverse Shortest Path Learning SPBV, OAM, Frame Ordering H A

14 14 Equal Cost Trees Optional Multipath Load Balancing different services Green and Blue Costs are equal A-C-D and A-B-D B C D E F G I J Bridge A H A

15 15 SPBM Multicast Groups B C D E F G I J Bridge A H A I-SID 5 I-SIDs define efficient subsets No Multicast Forwarding for I- SID 5 (Shortest path to E but not part of the tree) Multicast Forwarding for I-SID 5 I-SID 5

16 16 SPBM Multicast P2MP B C D E F G I J Bridge A H A I-SID 45 Root I-SID 45 Leaf I-SID 45 Leaf E-TREE I-SIDs Root to/From Leaf only Multicast Forwarding for I-SID 45 I-SID 45 Leaf

17 17 SPBM Per I-SID Controls ReplicationSPT NumberAggregation Each I-SID is a VLAN

18 18 Implementation of Congruency Tie-breaking extension to Dijkstra for the case of equal cost multiple paths –Sorted List of transit node IDs comprising a path are unique/deterministic. Ranking them produce deterministic default winner. –{2,6} < {3,7} < {4,7} Same algorithm is used both for unicast and multicast Bridge Bridge7Bridge1Bridge3 Bridge4 Bridge2Bridge6 1

19 19 Load sharing 16 trees are created by applying the previous algorithm AFTER XORing BridgeIDs with 16 different bit-masks. Example XORing with 0xff…ff (invert) selects largest ranked path so {~7,~4} wins.. Each mask is assigned to a B-VID (SPBM mode) Bridge Bridge7Bridge1Bridge3 Bridge4 Bridge2Bridge6 1 MASKS | B-VID 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF Low High

20 20 Load Sharing - Visually All links usable Animation Courtesy of Guoli Yin - Huawei

21 21 Highlighted is the routing from each member to all others. Note the symmetry. Unicast and multicast Follows exactly these Routes. Multicast can be replicated at fork points or head end replicated to the uni-cast paths by configuration at edge. ANIMATION FOR E-LAN 100 WITH 7 MEMBERS Animation Courtesy of Guoli Yin - Huawei

22 22 Loop Prevention Loop Prevention (Not new) –Policy : Loop Free by never allowing a loop to form –Never forward a Frame unless the neighbor node has agreed to accept it –Mechanism: Dont populate an FDB entry until you synchronize with next-hop neighbor. Loop Mitigation (New) –Policy: Discard potential looping frames –Never accept a Frame from a neighbor node that you do not expect –Mechanism: Ingress check. Source DA/VID must be expected. Local Policy. –Loop Prevention is sufficient, but Loop Mitigation is faster during changes –Loop Prevention for Multicast and Loop Mitigation for Multicast and Unicast

23 23 Application Data Center Totally compatible with Vmware server functions: OA&M, motion, backup etc. Apps that sit on Vmware just work. Totally compatible with Microsoft load balancing (multicast over the L2) VRRP transparent. It just makes the L2 part of the DC larger and better utilized. Compatible with emerging Inter DC overlay work.

24 24 Application Data Center AA22AA24AA25AA26 BB39BB40 BB41BB42 CC25CC26CC27CC28 DD77DD78 DD79DD * * Multiple shortest path routing (inter server traffic) Deterministic traffic flows. Flexible subnet – expand/shrink anywhere. Virtualization operates in subnet. Fully compatible with all Data Center Bridging protocols & OA&M. Address isolation through m-in-m Fast recovery No loops

25 aq ISIS LSP extensions at a glance LSPID Seq Num Checksum … x a 0xc01f ….. SOURCE HOST NAME Instance_1 NLPID SPB (0xC1) AREA ADDR NBR ID COST: 10 NBR ID COST: 10 SPSOURCEID SPB ECT-ALGORITHM 1 ECT-VID 101 SPB ECT-ALGORITHM 0 ECT-VID 100 SPB BMAC ECT-VID 100 SPB ISID 255T&R SPB BMAC ECT-VID 101 SPB ISID 256T&R :1 :4 :3 LSP fragment for node :1 with 2 peers :4 and :3 and two services 255, 256 (1) (2) (4) (3) (5)

26 26 EXAMPLE NETWORK : node network 8 member E-LAN ISID=255 Full Transit Replication

27 27 EXAMPLE – ISIS PEERS AT NODE :3 d spb The current global spb information is : Device HMAC is Spsid is Ect vlan amount is 2 Ect vlan sequence number [1] is: vlan 100 ! Ect vlan sequence number [2] is: vlan 101 ! d isis peer Peer information for ISIS(1) System Id Interface Circuit Id State HoldTime Type Vlanif Up 26s L Vlanif Up 23s L Vlanif Up 27s L Vlanif Up 27s L Vlanif Up 25s L1 Total Peer(s): 5 Logging on to node :3 We can see the basic SPB info and the ISIS peers….

28 28 EXAMPLE – LSDB at node :3 Database information for ISIS(1) Level-1 Link State Database LSPID Seq Num Checksum Holdtime Length ATT/P/OL x00000fd2 0x1cea /0/ * 0x x3d /0/ x00000ff8 0xd1d /0/ x00000b3b 0x9ba /0/ x00000b3b 0xbc /0/ x00000b3b 0xce /0/ x00000b3e 0xebe /0/ x00000b3b 0x8b /0/ a x00000b3b 0x57a /0/ b x00000b3a 0x /0/ c x00000b3a 0x /0/ d x00000b3a 0x89fd /0/ e x00000b39 0x /0/ f x00000b3a 0xdabe /0/ x00000b3b 0x810e /0/ x00000b3a 0x1b /0/ x00000b39 0x1b3e /0/ x00000b3a 0x943a /0/ x00000b3b 0xdff /0/ x00000b41 0xdade /0/ x00000b3e 0xa /0/ x00000b40 0x /0/ x00000b3a 0xadee /0/ x00000b3a 0xcff /0/ a x00000b3b 0xb /0/ b x00000b3b 0x /0/ c x00000b3b 0x /0/ d x00000b3b 0xa /0/ e x00000b3a 0xf5c /0/ f x00000b3b 0x8a /0/ x00000b3a 0x960a /0/ x00000b3b 0x5b /0/ x00000b3a 0x /0/ x00000b3b 0x /0/ x00000b39 0xc8ec /0/0 *(In TLV)-Leaking Route, *(By LSPID)-Self LSP, +-Self LSP(Extended), ATT-Attached, P-Partition, OL-Overload

29 29 EXAMPLE LSP VERBOSE OF NODE :1 at NODE :3 d isis lsdb verbose Database information for ISIS(1) Level-1 Link State Database LSPID Seq Num Checksum Holdtime x00000fd3 0x1aeb 1194 SOURCE NLPID SPB(0xC1) AREA ADDR NBR ID COST: 10 +NBR ID COST: 10 SPB ECT-ALGORITHM 0 ECT-VID 100 SPB ECT-ALGORITHM 1 ECT-VID 101 SPB ECT-ALGORITHM 2 ECT-VID 0 ……. SPB ECT-ALGORITHM 15 ECT-VID 0 SPSID SPB BMAC ECT-VID 100 SPB ISID 255T&R

30 30 d spb umac BMAC BVLAN IF NAME GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ a 100 GE2/0/ a 101 GE2/0/ b 100 GE2/0/ b 101 GE2/0/ c 100 GE2/0/ c 101 GE2/0/ d 100 GE2/0/ d 101 GE2/0/ e 100 GE2/0/ e 101 GE2/0/ f 100 GE2/0/ f 101 GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/18 Total unicast fib entries is 68 EXAMPLE – NODE :3 ROUTE TO :10 (first equal cost path)

31 31 d spb umac BMAC BVLAN IF NAME GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/ a 100 GE2/0/ a 101 GE2/0/ b 100 GE2/0/ b 101 GE2/0/ c 100 GE2/0/ c 101 GE2/0/ d 100 GE2/0/ d 101 GE2/0/ e 100 GE2/0/ e 101 GE2/0/ f 100 GE2/0/ f 101 GE2/0/ GE2/0/ GE2/0/ GE2/0/ GE2/0/18 Total unicast fib entries is 68 EXAMPLE – NODE :3 ROUTE TO :10 (second equal cost path)

32 32 EXAMPLE: E-LAN MCAST ROUTES FROM :1 (left) and :26 (right) Here are the multicast routes from node 1 for service 255 and also from node 26 for service 255. Note the symmetry in the route between the two multicast trees. The unicast route between :1 and :26 is also along that same path for the chosen B-VID. Since weve asked for transit replication for all members of the E-LAN we install MCAST … SRC

33 33 EXAMPLE: E-LAN MCAST ROUTES FROM :1 (left) and :26 (right) d spb mmac IN_PORT VID BMAC OUT_PORT GE2/0/ ff GE2/0/16, GE2/0/10... Total multicast num is | FLG | IN/IF | DESTINATION ADDR | BVID | OUT/IF(s) | | if/01 | ff | 0100 | {if/5,if/6 } … MULTICAST ADDRESS IS: [ SOURCE = | ISID=00-00-ff ] We only get this state if we configure transmit membership in the E-LAN. Transmit still possible without multicast state but uses serial replication at head end. Operator chooses trade-off between state/bandwidth usage SRC

34 34 Here are all mFIBs on nodes :3 and :13 related to this E-LAN. d spb mmac IN_PORT VID BMAC OUT_PORT GE2/0/ ff GE2/0/10, GE2/0/11 GE2/0/ ff GE2/0/10, GE2/0/11 GE2/0/ a00-00ff GE2/0/10, GE2/0/11 GE2/0/ d00-00ff GE2/0/10, GE2/0/11 GE2/0/ e00-00ff GE2/0/10, GE2/0/11 GE2/0/ ff GE2/0/16, GE2/0/10 GE2/0/ ff GE2/0/16, GE2/0/11 Total multicast num is | FLG | IN/IF | DESTINATION ADDR | BVID | OUT/IF(s) | | if/01 | ff | 0100 | {if/5,if/6 } | | if/01 | ff | 0100 | {if/5,if/6 } | | if/01 | a00-00ff | 0100 | {if/5,if/6 } | | if/05 | d00-00ff | 0100 | {if/1,if/3,if/6 } | | if/06 | e00-00ff | 0100 | {if/1,if/3,if/5 } | | if/03 | ff | 0100 | {if/5,if/6 }

35 35 References IEEE 802.1aq IS-IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging IEEE 802.1aq : Shortest Path Bridging – Efficient Control of Larger Ethernet Networks : upcoming IEEE Communications Magazine – Oct 2010 Provider Link State Bridging : IEEE Communications Magazine V46/N9– Sept ieeecommunicationsmagazinevol46no9sep2008-carrierscaleethernet.pdf ieeecommunicationsmagazinevol46no9sep2008-carrierscaleethernet.pdf Shortest Path Bridging IEEE 802.1aq NANOG49 – June

36 36 Glossary B-MAC Backbone MAC BEB Backbone Edge Bridge BCB Backbone Core Bridge C-VID Customer VID CFM Connectivity Fault Management CST Common Spanning Tree ELINE Ethernet Point to Point Service ELAN Ethernet LAN Service ETREE Ethernet Hub and Spoke Service FDB Filtering Data Base FID Forwarding Identifier I-SID (802.1ah) Service Identifier IGP Interior Gateway Protocol (Typically link state) IS-IS Intermediate System to Intermediate System (IGP) IST Internal Spanning Tree LAG Link Aggregation LAN Local Area Network MAC Media Access Control MACinMAC see PBB MEP Maintenance End point MIP Maintenance Intermediate point MMAC Multicast MAC MSTP Multiple Spanning tree protocol MMRP Multiple MAC Registration Protocol OAM Operations, Administration and Maintenance PB Provider Bridges IEEE 802.1ad PBB Provider Backbone Bridging IEEE 802.1ah PBB-TE PBB Traffic Engineering IEEE 802.1Qay QinQ see PB S-VID Service VID SPB Shortest Path Bridging IEEE 802.1aq SPBM Shortest Path Bridging MAC SPBV Shortest Path Bridging VID SPT Shortest Path Tree STP Spanning tree protocol RSTP Rapid Spanning tree protocol TTL Time To Live VID VLAN Identifier VLAN Virtual LAN

37 37 Thank You


Download ppt "1 Shortest Path Bridging IEEE 802.1aq Overview Don Fedyk Janos Farkas Mick Seaman"

Similar presentations


Ads by Google