Presentation is loading. Please wait.

Presentation is loading. Please wait.

Shortest Path Bridging IEEE 802.1aq Overview

Similar presentations


Presentation on theme: "Shortest Path Bridging IEEE 802.1aq Overview"— Presentation transcript:

1 Shortest Path Bridging IEEE 802.1aq Overview
Insightful Technology Talk Don Fedyk Janos Farkas Mick Seaman Peter Ashwood-Smith IEEE Interim San Diego July 14th 2010

2 Acknowledgments Nigel Bragg Guoli Yin Paul Unbehagen David Allan
Authors, Editors and contributors have all have many many years in the industry working in Ethernet, IP, MPLS, ATM, X.25, multiple Standards Bodies

3 Outline Project scope and introduction Requirements SPB mechanisms
SPBV SPBM Applications Examples References

4 You need someone in Marketing
Outline Cut down the length Condense Project scope and introduction Requirements SPB mechanisms SPBV SPBM Applications Examples References Stress the high points Use an IPAD Boring Reference Material You need someone in Marketing Too Long Impress Stimulate Discussion

5 Ethernet Bridging is successful but
Need a modern control plane address Arbitrary LANS SOURCE ROOT A1.. A100 DEST 2 - LEARN A1..A100

6 Load Sharing - Visually
All links usable Animation Courtesy of Guoli Yin - Huawei

7 But Moore’s law and technology trends are on our side!
SPB Challenges L2 networks that scale. Use of arbitrary mesh topologies. Use of (multiple) shortest paths. Efficient broadcast/multicast routing and replication points. Avoid address learning by tandem devices. Get recovery times into 100’s of millisecond range for larger topologies. Good scaling without loops. Allow creation of very many logical L2 topologies (subnets) of arbitrary span. Maintain all L2 properties within the logical L2 topologies (transparency, ordering, symmetry, congruence, shortest path etc). Reuse all existing Ethernet OA&M 802.1ag/Y.1731 But Moore’s law and technology trends are on our side!

8 How does it work? From Operators Perspective Internally Use IS-IS !!!
Plug NNI’s together Group ports/c-vlan/s-vlan at UNIs that you want to bridge (224 groups=‘services’ SPBM mode.) Assign an I-SID to each group.. Internally Use IS-IS !!! IS-IS reads box MAC, forms NNI adjacencies IS-IS advertises box MACs (so no config). IS-IS reads UNI port services and advertises. Computations produce FIBs that bridge service members.

9 Pushing Scale in Flat networks
SPBV SPBM Metro Core Network Reliability Auto-discovery Load sharing Managed addresses Access Network Bandwidth efficiency Unknown or managed addresses Enterprise Network Plug & Play Easy to operate Unknown addresses MAC learning in data plane in control plane IEEE 802.1aq VLANS Data Center Using the project numbers (one SPBM Domain of 1000 nodes) Easily address Millions of devices Why? Orthogonal Address, Service and Topology

10 Orthogonal Topology Common Spanning Tree (CST)
Internal Spanning Tree (IST) Common and Internal Spanning Tree SPT Region IST SPT Region MST Region IST MST Region CST RSTP bridges

11 Orthogonal Service and Address
Provider Backbone Bridges 802.1ah Encapsulation for virtualization is important in many networks Provider Bridges 802.1ad Ethernet Ethertype VLAN C-VID Ethernet 802.3 C-TAG S-VID S-TAG SA Ethertype DA C-VID I-SID Ethertype C-TAG I-TAG C-VID S-VID B-VID Ethertype Q-TAG S-TAG B-TAG Consistent Forwarding SA SA SA B-SA DA DA DA B-DA 1998 2005 2008 Standard Approved It is a very good Data Plane!

12 SPBM Multicast Addresses The SPBM Trifecta
By constructing local IEEE Multicast Addresses the Control Plane has complete flexibility to build multicast trees. Computation, Source Identification, Service Identification

13 Congruency Same Forward and Reverse Shortest Path
Shortest path between any two points is both the same and symmetrical for unicast and multicast D E C H A J G Bridge “A” B I F Same Forward and Reverse Shortest Path Learning SPBV, OAM, Frame Ordering

14 Green and Blue Costs are equal A-C-D and A-B-D
Equal Cost Trees Green and Blue Costs are equal A-C-D and A-B-D D E C H A J G Bridge “A” B I F Optional Multipath Load Balancing different services

15 Multicast Forwarding for I-SID 5
SPBM Multicast Groups I-SID 5 Multicast Forwarding for I-SID 5 IS-IS I-SID 5 IS-IS D E IS-IS IS-IS C H IS-IS IS-IS IS-IS A IS-IS J G Bridge “A” B I-SID 5 IS-IS IS-IS No Multicast Forwarding for I-SID 5 (Shortest path to E but not part of the tree) I F I-SID 5 I-SIDs define efficient subsets

16 Multicast Forwarding for I-SID 45
SPBM Multicast P2MP Multicast Forwarding for I-SID 45 IS-IS I-SID 45 Leaf IS-IS D E IS-IS IS-IS I-SID 45 Leaf C H IS-IS IS-IS IS-IS A IS-IS J G Bridge “A” B I-SID 45 Root IS-IS IS-IS I F I-SID 45 Leaf E-TREE I-SIDs Root to/From Leaf only

17 SPBM Per I-SID Controls
Aggregation Replication SPT Number Customer - Group Head Node Each I-SID is a VLAN

18 Implementation of Congruency
Tie-breaking extension to Dijkstra for the case of equal cost multiple paths Sorted List of transit node IDs comprising a path are unique/deterministic. Ranking them produce deterministic default winner. {2,6} < {3,7} < {4,7} Same algorithm is used both for unicast and multicast Bridge3 1 1 Bridge7 1 1 Bridge1 Bridge4 1 Bridge5 1 Bridge2 1 1 Bridge6

19 Load sharing 16 trees are created by applying the previous algorithm AFTER XORing BridgeID’s with 16 different bit-masks. Example XORing with 0xff…ff (invert) selects largest ranked path so {~7,~4} wins.. Each mask is assigned to a B-VID (SPBM mode) MASKS | B-VID 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF Low Bridge3 1 1 Bridge7 1 1 Bridge1 Bridge4 1 Bridge5 1 Bridge2 1 1 Bridge6 High

20 Load Sharing - Visually
All links usable Animation Courtesy of Guoli Yin - Huawei

21 ANIMATION FOR E-LAN ‘100’ WITH 7 MEMBERS
Highlighted is the routing from each member to all others. Note the symmetry. Unicast and multicast Follows exactly these Routes. Multicast can be replicated at fork points or head end replicated to the uni-cast paths by configuration at edge. Animation Courtesy of Guoli Yin - Huawei

22 Loop Prevention Loop Prevention (Not new) Loop Mitigation (New)
Policy : Loop Free by never allowing a loop to form “Never forward a Frame unless the neighbor node has agreed to accept it” Mechanism: Don’t populate an FDB entry until you synchronize with next-hop neighbor. Loop Mitigation (New) Policy: Discard potential looping frames “Never accept a Frame from a neighbor node that you do not expect” Mechanism: Ingress check. Source DA/VID must be expected. Local Policy. Loop Prevention is sufficient, but Loop Mitigation is faster during changes Loop Prevention for Multicast and Loop Mitigation for Multicast and Unicast

23 Application Data Center
Totally compatible with Vmware server functions: OA&M, motion, backup etc. Apps that sit on Vmware ‘just work’. Totally compatible with Microsoft load balancing (multicast over the L2) VRRP transparent. It just makes the L2 part of the DC larger and better utilized. Compatible with emerging Inter DC overlay work.

24 Application Data Center
Multiple shortest path routing (inter server traffic) Deterministic traffic flows. Flexible subnet – expand/shrink anywhere. Virtualization operates in subnet. Fully compatible with all Data Center Bridging protocols & OA&M. Address isolation through m-in-m Fast recovery No loops * * AA22 AA24 AA25 AA26 BB39 BB40 BB41 BB42 CC25 CC26 CC27 CC28 DD77 DD78 DD79 DD80

25 802.1aq ISIS LSP extensions at a glance
LSPID Seq Num Checksum …. x a 0xc01f ….. SOURCE HOST NAME Instance_1 NLPID SPB (0xC1) AREA ADDR NBR ID COST: 10 NBR ID COST: 10 SPSOURCEID SPB ECT-ALGORITHM 1 ECT-VID 101 SPB ECT-ALGORITHM 0 ECT-VID 100 SPB BMAC ECT-VID SPB ISID T&R ECT-VID SPB ISID T&R (1) :4 10 (2) 255 (3) :1 :3 10 256 (4) LSP fragment for node :1 with 2 peers :4 and :3 and two services 255, 256 (5)

26 EXAMPLE NETWORK : Full Transit Replication 36 node network
255 255 255 255 255 255 255 Full Transit Replication 255 36 node network 8 member E-LAN ISID=255

27 EXAMPLE – ISIS PEERS AT NODE :3
<ottawa >d spb The current global spb information is : Device HMAC is Spsid is Ect vlan amount is 2 Ect vlan sequence number [1] is: vlan 100 ! Ect vlan sequence number [2] is: vlan 101 ! <ottawa > <ottawa >d isis peer Peer information for ISIS(1) System Id Interface Circuit Id State HoldTime Type Vlanif Up 26s L1 Vlanif Up 23s L1 Vlanif Up 27s L1 Vlanif Up 27s L1 Vlanif Up 25s L1 Total Peer(s): 5 Logging on to node :3 We can see the basic SPB info and the ISIS peers….

28 EXAMPLE – LSDB at node :3 Database information for ISIS(1)
Level-1 Link State Database LSPID Seq Num Checksum Holdtime Length ATT/P/OL x00000fd2 0x1cea /0/0 * 0x x3d /0/0 x00000ff8 0xd1d /0/0 x00000b3b 0x9ba /0/0 x00000b3b 0xbc /0/0 x00000b3b 0xce /0/0 x00000b3e 0xebe /0/0 x00000b3b 0x8b /0/0 a x00000b3b 0x57a /0/0 b x00000b3a 0x /0/0 c x00000b3a 0x /0/0 d x00000b3a 0x89fd /0/0 e x00000b39 0x /0/0 f x00000b3a 0xdabe /0/0 x00000b3b 0x810e /0/0 x00000b3a 0x1b /0/0 x00000b39 0x1b3e /0/0 x00000b3a 0x943a /0/0 x00000b3b 0xdff /0/0 x00000b41 0xdade /0/0 x00000b3e 0xa /0/0 x00000b40 0x /0/0 x00000b3a 0xadee /0/0 x00000b3a 0xcff /0/0 a x00000b3b 0xb /0/0 b x00000b3b 0x /0/0 c x00000b3b 0x /0/0 d x00000b3b 0xa /0/0 e x00000b3a 0xf5c /0/0 f x00000b3b 0x8a /0/0 x00000b3a 0x960a /0/0 x00000b3b 0x5b /0/0 x00000b3a 0x /0/0 x00000b3b 0x /0/0 x00000b39 0xc8ec /0/0 *(In TLV)-Leaking Route, *(By LSPID)-Self LSP, +-Self LSP(Extended), ATT-Attached, P-Partition, OL-Overload

29 EXAMPLE LSP VERBOSE OF NODE :1 at NODE :3
<ottawa >d isis lsdb verbose Database information for ISIS(1) Level-1 Link State Database LSPID Seq Num Checksum Holdtime x00000fd3 0x1aeb SOURCE NLPID SPB(0xC1) AREA ADDR +NBR ID COST: 10 +NBR ID COST: 10 SPB ECT-ALGORITHM 0 ECT-VID 100 SPB ECT-ALGORITHM 1 ECT-VID 101 SPB ECT-ALGORITHM 2 ECT-VID 0 ……. SPB ECT-ALGORITHM 15 ECT-VID 0 SPSID SPB BMAC ECT-VID SPB ISID T&R <ottawa >

30 EXAMPLE – NODE :3 ROUTE TO :10 (first equal cost path)
<ottawa >d spb umac BMAC BVLAN IF NAME GE2/0/11 GE2/0/11 GE2/0/12 GE2/0/12 GE2/0/16 GE2/0/16 GE2/0/16 GE2/0/17 GE2/0/17 GE2/0/17 GE2/0/17 GE2/0/17 GE2/0/12 GE2/0/18 a GE2/0/17 a GE2/0/18 b GE2/0/18 b GE2/0/18 c GE2/0/18 c GE2/0/18 d GE2/0/16 d GE2/0/18 e GE2/0/16 e GE2/0/18 f GE2/0/16 f GE2/0/18 GE2/0/16 GE2/0/18 ... GE2/0/12 GE2/0/18 Total unicast fib entries is 68 <ottawa >

31 EXAMPLE – NODE :3 ROUTE TO :10 (second equal cost path)
<ottawa >d spb umac BMAC BVLAN IF NAME GE2/0/11 GE2/0/11 GE2/0/12 GE2/0/12 GE2/0/16 GE2/0/16 GE2/0/16 GE2/0/17 GE2/0/17 GE2/0/17 GE2/0/17 GE2/0/17 GE2/0/12 GE2/0/18 a GE2/0/17 a GE2/0/18 b GE2/0/18 b GE2/0/18 c GE2/0/18 c GE2/0/18 d GE2/0/16 d GE2/0/18 e GE2/0/16 e GE2/0/18 f GE2/0/16 f GE2/0/18 GE2/0/16 GE2/0/18 ... GE2/0/12 GE2/0/18 Total unicast fib entries is 68 <ottawa >

32 EXAMPLE: E-LAN MCAST ROUTES FROM :1 (left) and :26 (right)
SRC SRC Here are the multicast routes from node 1 for service 255 and also from node 26 for service 255. Note the symmetry in the route between the two multicast trees. The unicast route between :1 and :26 is also along that same path for the chosen B-VID. Since we’ve asked for transit replication for all members of the E-LAN we install MCAST …

33 EXAMPLE: E-LAN MCAST ROUTES FROM :1 (left) and :26 (right)
5 | FLG | IN/IF | DESTINATION ADDR | BVID | OUT/IF(s) | | if/01 | ff | 0100 | {if/5,if/6 } …. 6 1 10 16 11 SRC <ottawa >d spb mmac IN_PORT VID BMAC OUT_PORT ... GE2/0/ ff GE2/0/16, GE2/0/10 Total multicast num is 7 <ottawa > MULTICAST ADDRESS IS: [ SOURCE = | ISID=00-00-ff ] We only get this state if we configure transmit membership in the E-LAN. Transmit still possible without multicast state but uses serial replication at head end. Operator chooses trade-off between state/bandwidth usage.

34 Here are all mFIBs on nodes :3 and :13 related to this E-LAN.
| FLG | IN/IF | DESTINATION ADDR | BVID | OUT/IF(s) | | if/01 | ff | 0100 | {if/5,if/6 } | | if/01 | ff | 0100 | {if/5,if/6 } | | if/01 | a00-00ff | 0100 | {if/5,if/6 } | | if/05 | d00-00ff | 0100 | {if/1,if/3,if/6 } | | if/06 | e00-00ff | 0100 | {if/1,if/3,if/5 } | | if/03 | ff | 0100 | {if/5,if/6 } Here are all mFIBs on nodes :3 and :13 related to this E-LAN. <ottawa >d spb mmac IN_PORT VID BMAC OUT_PORT GE2/0/ ff GE2/0/10, GE2/0/11 GE2/0/ ff GE2/0/10, GE2/0/11 GE2/0/ a00-00ff GE2/0/10, GE2/0/11 GE2/0/ d00-00ff GE2/0/10, GE2/0/11 GE2/0/ e00-00ff GE2/0/10, GE2/0/11 GE2/0/ ff GE2/0/16, GE2/0/10 GE2/0/ ff GE2/0/16, GE2/0/11 Total multicast num is 7 <ottawa >

35 References “IEEE 802.1aq” “IS-IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging” “IEEE 802.1aq” : “Shortest Path Bridging – Efficient Control of Larger Ethernet Networks” : upcoming IEEE Communications Magazine – Oct 2010 “Provider Link State Bridging” : IEEE Communications Magazine V46/N9– Sept ieeecommunicationsmagazinevol46no9sep2008-carrierscaleethernet.pdf “Shortest Path Bridging IEEE 802.1aq” NANOG49 – June

36 Glossary B-MAC Backbone MAC BEB Backbone Edge Bridge
BCB Backbone Core Bridge C-VID Customer VID CFM Connectivity Fault Management CST Common Spanning Tree ELINE Ethernet Point to Point Service ELAN Ethernet LAN Service ETREE Ethernet Hub and Spoke Service FDB Filtering Data Base FID Forwarding Identifier I-SID (802.1ah) Service Identifier IGP Interior Gateway Protocol (Typically link state) IS-IS Intermediate System to Intermediate System (IGP) IST Internal Spanning Tree LAG Link Aggregation LAN Local Area Network MAC Media Access Control MACinMAC see PBB MEP Maintenance End point MIP Maintenance Intermediate point MMAC Multicast MAC MSTP Multiple Spanning tree protocol MMRP Multiple MAC Registration Protocol OAM Operations, Administration and Maintenance PB Provider Bridges IEEE 802.1ad PBB Provider Backbone Bridging IEEE 802.1ah PBB-TE PBB Traffic Engineering IEEE 802.1Qay QinQ see PB S-VID Service VID SPB Shortest Path Bridging IEEE 802.1aq SPBM Shortest Path Bridging MAC SPBV Shortest Path Bridging VID SPT Shortest Path Tree STP Spanning tree protocol RSTP Rapid Spanning tree protocol TTL Time To Live VID VLAN Identifier VLAN Virtual LAN

37 Thank You


Download ppt "Shortest Path Bridging IEEE 802.1aq Overview"

Similar presentations


Ads by Google