Presentation is loading. Please wait.

Presentation is loading. Please wait.

Exosphere Temperature Variability at Earth, Mars and Venus

Similar presentations


Presentation on theme: "Exosphere Temperature Variability at Earth, Mars and Venus"— Presentation transcript:

1 Exosphere Temperature Variability at Earth, Mars and Venus
due to Solar Irradiation Jeffrey M. Forbes Department of Aerospace Engineering Sciences University of Colorado, Boulder, Colorado, USA Sean L. Bruinsma Department of Terrestrial and Planetary Geodesy Centre Nationale D'Etudes Spatiales,Toulouse, France International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

2 International Conference on Comparative Planetology: Venus – Earth – Mars, 11-15 May 2009, ESA-ESTEC

3 Exosphere Temperature Variability
at Earth, Mars and Venus Earth Mars Venus Solar Irradiation & Planetary Rotation K 50-120K 200 K In-situ Solar Tides Propagating from Below 20-50K > 20-50K ? ? Solar Radiation Variability 800K 180K 40K Long-term 50-100K 20-40K 20K Solar Rotation Day-to-day 20-40K ? ? ? ? Solar Wind Interaction 20-200K International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

4 81-DAY MEAN EXOSPHERE DENSITY AT MARS,
Normalized to 390 km and Derived from Precise Orbit Determination of MGS (370 x 437 km orbit; perigee -40º to -60º latitude, 1400 LT) Equinox Equinox S. Hemis. Summer N. Hemis. Summer 81-day mean F10.7 solar flux at 1 AU 81-day mean F10.7 solar flux at Mars ( AU) 81-day mean density Note: Each density determination is made over 3-5 Mars days, and is a longitude average, so there is no possibility to derive longitude variability, e.g., as seen in MGS accelerometer data. International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

5 Least-Squares Fit to Exosphere Temperature Derived from
Observed Densities and DTM-Mars (Lemoine and Bruinsma, 2002) S. Hemis. Summer Equinox N. Hemis. Summer Equinox zonal mean dust optical depth ±30o latitude avg. Fit for density (10-18 cm-3): International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

6 Mars Venus Earth Jacchia (1970) Kasprzak et al. (1997) PVO, Magellan
MGS Drag Analysis Kasprzak et al. (1997) PVO, Magellan NRLMSISE00 Jacchia (1970) Earth International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

7 Exosphere Temperature Variability due to the Sun’s Rotation
Forbes, J.M., Bruinsma, S., Lemoine, F.G., Bowman, B.R., and A. Konopliv, Variability of the Satellite Drag Environments of Earth, Mars and Venus due to Rotation of the Sun, J. Spacecraft & Rockets, 44, , 2007. International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

8 In-situ Thermal Tides at Mars & Earth
Solar Irradiation & Planetary Rotation In-situ Thermal Tides at Mars & Earth Niemann et al., Earth Planets Space, 50, , 1998. Mars SSMAX T ~ 120K SSMIN T ~ 40K SSMAX T ~ 400K Earth SSMIN T ~ 200K International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

9 Exosphere Temperature Variability due to Sun-Synchronous
Semidiurnal Solar Tides Propagating from Below Mars low dust Ls = 270 Earth Mars low dust Ls = 270 International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

10 max-min variation with longitude
Topographic/land-sea Modulation of Periodic Solar Radiation Absorption Gives Rise to Longitude-Dependent Tidal perturbations Diurnally-varying solar radiation ≈ 25 K max-min variation with longitude 12 local time 24 Diurnal amplitude of latent heating due to tropical convection International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

11 Mars Thermosphere Densities at 120 km, 1500 LT, Kg/m3
Longitudinal Structures Due to Vertically-Propagating Thermal Tides Modulated by Topography MGS Accelerometer Mars GCM, Moudden & Forbes, 2008 International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC

12 Conclusions Concerning Exosphere Temperature Responses of the Terrestrial Planets to Changes in Solar Irradiation These exosphere temperature responses are determined by Magnitude of incoming solar radiation (i.e., orbit) & heating efficiency CO2 content, i.e., cooling efficiency Dynamics, i.e., adiabatic cooling (ion drag on Earth) Rotation rate of the planet Solar radiative absorption and heating at lower altitudes, i.e., upward-propagating thermal tides Modulating topography International Conference on Comparative Planetology: Venus – Earth – Mars, May 2009, ESA-ESTEC


Download ppt "Exosphere Temperature Variability at Earth, Mars and Venus"

Similar presentations


Ads by Google