Presentation is loading. Please wait.

Presentation is loading. Please wait.

Principles and Problems

Similar presentations


Presentation on theme: "Principles and Problems"— Presentation transcript:

1 Principles and Problems
PHYSICS Principles and Problems Chapter 18: Refraction and Lenses

2 Refraction and Lenses BIG IDEA Lenses refract light and create images.
CHAPTER18 Refraction and Lenses BIG IDEA Lenses refract light and create images.

3 Section 18.1 Refraction of Light
CHAPTER18 Table Of Contents Section Refraction of Light Section Convex and Concave Lenses Section Application of Lenses Click a hyperlink to view the corresponding slides. Exit

4 Refraction of Light MAIN IDEA Essential Questions
SECTION18.1 Refraction of Light MAIN IDEA The amount of refraction at a boundary depends on the indices of refraction of the two mediums and the angle of incidence. Essential Questions What is Snell’s law of refraction? What is the meaning of the index of refraction? How does total internal reflection occur? How does refraction cause various optical effects?

5 Refraction of Light Review Vocabulary New Vocabulary
SECTION18.1 Refraction of Light Review Vocabulary refraction the change in direction of waves at the boundary between two different mediums New Vocabulary Index of refraction Critical angle Total internal reflection Dispersion

6 Refraction of Light Light and Boundaries
SECTION18.1 Refraction of Light Light and Boundaries When light encounters a transparent or translucent medium, some light is reflected from the surface of the medium and some is transmitted through the medium. Recall that when light crosses a boundary between two mediums, it bends. A phenomenon called refraction.

7 Light and Boundaries (cont.)
SECTION18.1 Refraction of Light Light and Boundaries (cont.) Look at the figure below: Identical rays of light start in air and pass into three different mediums at the same angle. What do you notice about the light rays after they cross the boundaries?

8 Light and Boundaries (cont.)
SECTION18.1 Refraction of Light Light and Boundaries (cont.) The light rays bend more when traveling from air to diamond than from air to water or air to glass because this phenomenon depends on properties of the mediums that the light rays are traveling from and into. What do you think the relationship is between the angle of the light as it crosses the boundary between mediums and refraction?

9 Snell’s Law of Refraction
SECTION18.1 Refraction of Light Snell’s Law of Refraction When you shine a narrow beam of light at the surface of a piece of glass, it bends as it crosses the boundary from air to glass. The bending of light, called refraction, was first studied by René Descartes and Willebrord Snell around the time of Kepler and Galileo. Horizons Companies

10 Snell’s Law of Refraction (cont.)
SECTION18.1 Refraction of Light Snell’s Law of Refraction (cont.) The angle of incidence, θ1, is the angle at which the light ray strikes the surface. It is measured from the normal to the surface. Horizons Companies

11 Snell’s Law of Refraction (cont.)
SECTION18.1 Refraction of Light Snell’s Law of Refraction (cont.) The angle of refraction, θ2, is the angle at which the transmitted light leaves the surface. It also is measured with respect to the normal. Horizons Companies

12 Snell’s Law of Refraction (cont.)
SECTION18.1 Refraction of Light Snell’s Law of Refraction (cont.) Snell found that when light went from air into a transparent substance, the sines of the angles were related by the equation sin θ1/sin θ2 = n. Here, n is a constant that depends on the substance, not on the angles, and is called the index of refraction. The relationship found by Snell is also valid when light goes across a boundary between any two materials.

13 Snell’s Law of Refraction (cont.)
SECTION18.1 Refraction of Light Snell’s Law of Refraction (cont.) Snell’s Law of Refraction According to Snell’s Law of Refraction, the product of the index of refraction of the first medium and the sine of the angle of incidence is equal to the product of the index of refraction of the second medium and the sine of the angle of refraction.

14 Snell’s Law of Refraction (cont.)
SECTION18.1 Refraction of Light Snell’s Law of Refraction (cont.) When light goes from air to glass, it moves from a material with a lower index of refraction to one with a higher index of refraction. That is, n1 < n2. To keep the two sides of the equation equal, one must have sin θ1 > sin θ2. The light beam is bent toward the normal to the surface.

15 Snell’s Law of Refraction (cont.)
SECTION18.1 Refraction of Light Snell’s Law of Refraction (cont.) When light travels from glass to air it moves from material having a higher index of refraction to one with a lower index. In this case, n1 > n2. To keep the two sides of the equation equal one must have sin θ1 < sin θ2. The light is bent away from the normal. Note that the direction of the ray when it leaves the glass is the same as it was before it struck the glass, but it is shifted from its original position.

16 Refraction of Light Angle of Refraction
SECTION18.1 Refraction of Light Angle of Refraction A light beam in air hits a sheet of float glass at an angle of 30.0°. What is the angle of refraction of the light ray?

17 Step 1: Analyze and Sketch the Problem
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Step 1: Analyze and Sketch the Problem Make a sketch of the air and crown glass boundary. Draw a ray diagram.

18 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Identify the known and unknown variables. Known: θ1 = 30.0º n1 = 1.00 n2 = 1.52 Unknown: θ2 = ?

19 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Step 2: Solve for the Unknown

20 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Use Snell’s law to solve for the sine of the angle of refraction.

21 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Substitute n1 = 1.00, n2 = 1.52, θ1 = 30.0°

22 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Step 3: Evaluate the Answer

23 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) Are the units correct? Angles are expressed in degrees. Is the magnitude realistic? The index of refraction, n2, is greater than the index of refraction, n1. Therefore, the angle of refraction, θ2, must be less than the angle of incidence, θ1.

24 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) The steps covered were: Step 1: Analyze and Sketch the Problem Make a sketch of the beam moving from the air to the crown glass. Draw a ray diagram.

25 Angle of Refraction (cont.)
SECTION18.1 Refraction of Light Angle of Refraction (cont.) The steps covered were: Step 2: Solve for the Unknown Use Snell’s law to solve for the sine of the angle of refraction. Step 3: Evaluate the Answer

26 The Meaning of the Index of Refraction
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction The wave relationship for light traveling through a vacuum, λ = c/f, can be rewritten as λ = v/f, where v is the speed of light in any medium, and λ is the wavelength. The frequency of light, f, does not change when it crosses a boundary.

27 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) That is, the number of oscillations per second that arrive at a boundary is the same as the number that leave the boundary and transmit through the refracting medium. So, the wavelength of light, λ, must decrease when light slows down. Wavelength in a medium is shorter than wavelength in a vacuum.

28 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) The diagram shows a beam of light as being made up of a series of parallel, straight wave fronts. Each wave front represents the crest of a wave and is perpendicular to the direction of the beam. The beam strikes the surface at an angle, θ1.

29 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) Consider the triangle PQR. Because the wave fronts are perpendicular to the direction of the beam, PQR is a right angle and QRP is equal to θ1.

30 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) Sin θ1 is equal to the distance between P and Q divided by the distance between P and R.

31 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) The angle of refraction, θ2, can be related in a similar way to the triangle PSR. In this case: By taking the ratio of the sines of the two angles, is canceled, leaving the following equation:

32 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) .

33 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) Using λ = v/f in the above equation and canceling the common factor of f, the equation is rewritten as follows:

34 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) Snell’s law also can be written as a ratio of the sines of the angles of incidence and refraction.

35 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) Using the transitive property of equality, the previous two equations lead to the following equation: In a vacuum, n = 1 and v = c. If the medium is a vacuum, then the equation is simplified to an equation that relates the index of refraction to the speed of light in a medium.

36 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) Index of Refraction The index of refraction of a medium is equal to the speed of light in a vacuum divided by the speed of light in the medium. This definition of the index of refraction can be used to find the wavelength of light in a medium.

37 The Meaning of the Index of Refraction (cont.)
SECTION18.1 Refraction of Light The Meaning of the Index of Refraction (cont.) In a medium with an index of refraction n, the speed of light is given by v = c/n. The wavelength of the light in a vacuum is λ0 = c/f. Solve for frequency, and substitute f = c/λ0 and v = c/n into λ = v/f. λ = (c/n)/(c/λ0) = λ0/n, and thus the wavelength of light in a medium is smaller than the wavelength in a vacuum.

38 Click image to view movie.
SECTION18.1 Refraction of Light Total Internal Reflection Click image to view movie.

39 Critical Angle for Total Internal Reflection
SECTION18.1 Refraction of Light Total Internal Reflection (cont.) To construct an equation for the critical angle of any boundary, you can use Snell’s law and substitute θ1 = θc and θ2 = 90.0°. Critical Angle for Total Internal Reflection The sine of the critical angle is equal to the index of refraction of the refracting medium divided by the index of refraction of the incident medium.

40 Total Internal Reflection (cont.)
SECTION18.1 Refraction of Light Total Internal Reflection (cont.) Total internal reflection causes some curious effects. Suppose that you are looking up at the surface from underwater in a calm pool. You might see an upside-down reflection of another nearby object that also is underwater or a reflection of the bottom of the pool itself. The surface of the water acts like a mirror.

41 Total Internal Reflection (cont.)
SECTION18.1 Refraction of Light Total Internal Reflection (cont.) Likewise, when you are standing on the side of a pool, it is possible for things below the surface of the water in the pool to not be visible to you. When a swimmer is underwater, near the surface, and on the opposite side of the pool from you, you might not see him or her. This is because the light from his or her body does not transmit from the water into the air, but is reflected.

42 Total Internal Reflection (cont.)
SECTION18.1 Refraction of Light Total Internal Reflection (cont.) Optical fibers are an important technical application of total internal reflection. The light traveling through the transparent fiber always hits the internal boundary of the optical fiber at an angle greater than the critical angle, so all of the light is reflected and none of the light is transmitted through the boundary. Thus, the light maintains its intensity over the distance of the fiber.

43 Refraction of Light Mirages
SECTION18.1 Refraction of Light Mirages On a hot summer day, as you drive down a road, you see what appears to be the reflection of an oncoming car in a pool of water. The pool, however, disappears as you approach it.

44 Refraction of Light Mirages (cont.)
SECTION18.1 Refraction of Light Mirages (cont.) The mirage is the result of the Sun heating the road. The hot road heats the air above it and produces a thermal layering of air that causes light traveling toward the road to gradually bend upward. This makes the light appear to be coming from a reflection in a pool.

45 Refraction of Light Mirages (cont.)
SECTION18.1 Refraction of Light Mirages (cont.) As light from a distant object travels downward toward the road, the index of refraction of the air decreases as the air gets hotter, but the temperature change is gradual.

46 Refraction of Light Mirages (cont.)
SECTION18.1 Refraction of Light Mirages (cont.) In the case of a mirage, the Huygens’ wavelets closer to the ground travel faster than those higher up, causing the wave fronts to gradually turn upward.

47 Refraction of Light Mirages (cont.)
SECTION18.1 Refraction of Light Mirages (cont.) A similar phenomenon, called a superior mirage, occurs when a reflection of a distant boat appears above the boat. The water keeps the air that is closer to its surface cooler.

48 Refraction of Light Dispersion of Light
SECTION18.1 Refraction of Light Dispersion of Light The speed of light in a medium is determined by interactions between the light and the atoms that make up the medium. Temperature and pressure are related to the energy of particles on the atomic level.

49 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) The speed of light, and therefore, the index of refraction for a gaseous medium, can change slightly with temperature. In addition, the speed of light and the index of refraction vary for different wavelengths of light in the same liquid or solid medium.

50 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) White light separates into a spectrum of colors when it passes through a glass prism. This phenomenon is called dispersion. Don Farrall/Photodisc/Getty Images

51 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) If you look carefully at the light that passes through a prism, you will notice that violet is refracted more than red. This occurs because the speed of violet light through glass is less than the speed of red light through glass.

52 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) Violet light has a higher frequency than red light, which causes it to interact differently with the atoms of the glass. This results in glass having a slightly higher index of refraction for violet light than it has for red light.

53 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) A prism is not the only means of dispersing light. A rainbow is a spectrum formed when sunlight is dispersed by water droplets in the atmosphere.

54 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) Sunlight that falls on a water droplet is refracted. Because of dispersion, each color is refracted at a slightly different angle.

55 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) At the back surface of the droplet, some of the light undergoes internal reflection. On the way out of the droplet, the light once again is refracted and dispersed.

56 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) Although each droplet produces a complete spectrum, an observer positioned between the Sun and the rain will see only a certain wavelength of light from each droplet. The wavelength depends on the relative positions of the Sun, the droplet, and the observer.

57 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) Because there are many droplets in the sky, a complete spectrum is visible. The droplets reflecting red light make an angle of 42° in relation to the direction of the Sun’s rays; the droplets reflecting blue light make an angle of 40°.

58 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) Sometimes, you can see a faint second-order rainbow. The second rainbow is outside the first, is fainter, and has the order of the colors reversed. Light rays that are reflected twice inside water droplets produce this effect.

59 Dispersion of Light (cont.)
SECTION18.1 Refraction of Light Dispersion of Light (cont.) Very rarely, a third rainbow is visible outside the second. What is your prediction about how many times light is reflected in the water droplets and the order of appearance of the colors for the third rainbow?

60 SECTION18.1 Section Check Why do the feet of a person standing still in a swimming pool appear to move back and forth? A. because water is denser than air B. because water is more viscous than air C. because light changes direction as it passes into air D. because light spreads as it passes from air to water

61 SECTION18.1 Section Check Answer Reason: When light passes from one medium to another, its path bends due to refraction. As light waves travel along the surface of water, the boundary between air and water moves up and down, and tilts back and forth. The path of light leaving the water shifts as the boundary moves, causing objects under the surface to appear to waver.

62 SECTION18.1 Section Check What happens when light traveling from a region of a higher index of refraction to a region of a lower index of refraction strikes the boundary at an angle greater than the critical angle? A. All light reflects back into the region of higher index of refraction. B. The refracted light ray lies along the boundary of the two media. C. The angle of refraction is less than the angle of incidence. D. All light is absorbed at the boundary.

63 SECTION18.1 Section Check Answer Reason: Total internal reflection occurs when light traveling from a region of higher index of refraction to a region of lower index of refraction strikes the boundary at an angle greater than the critical angle such that all light reflects back into the region of higher index of refraction.

64 SECTION18.1 Section Check Explain why, if you are standing by the side of a pool, you cannot see a swimmer who is underwater near the surface, and on the opposite side of the pool. A. This is because the light from the swimmer’s body refracts along the boundary of air and water. B. This is because the light from the swimmer’s body is not transmitted from the water into the air, but is reflected back into the water. C. This is because the light from the swimmer’s body refracts on the opposite side of the pool. D. This is because the light from the swimmer’s body is partially refracted and partially reflected.

65 SECTION18.1 Section Check Answer Reason: The surface of water acts like a mirror. Hence, when a swimmer is underwater, the light from the swimmer’s body is not transmitted from the water into the air, but is reflected back into the water. Therefore, we cannot see the swimmer from the opposite side of the pool.

66

67 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses MAIN IDEA Lenses can be used to make enlarged and reduced images. Essential Questions How are real and virtual images formed by single convex and concave lenses? How can images formed by lenses be located and described with ray diagrams and equations? How can chromatic aberration be reduced?

68 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Review Vocabulary transparent a property of a medium that allows that medium to transmit light and reflect a fraction of the light, allowing objects to be seen clearly through it New Vocabulary Lens Convex lens Concave lens Thin lens equation Chromatic aberration Achromatic lens

69 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Types of Lenses A lens is a piece of transparent material, such as glass or plastic, that is used to focus light and form an image. Each of a lens’s two faces might be either curved or flat.

70 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Types of Lenses (cont.) The lens shown in the figure is called a convex lens because it is thicker at the center than at the edges. A convex lens often is called a converging lens because when surrounded by material with a lower index of refraction, it refracts parallel light rays so that the rays meet at a point. Horizons Companies

71 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Types of Lenses (cont.) The lens shown in the figure is called a concave lens because it is thinner in the middle than at the edges. A concave lens often is called a diverging lens because when surrounded by material with a lower index of refraction, rays passing through it spread out. Horizons Companies

72 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Types of Lenses (cont.) When light passes through a lens, refraction occurs at the two lens surfaces. Using Snell’s law and geometry, you can predict the paths of rays passing through lenses. To simplify such problems, assume that all refraction occurs on a plane, called the principal plane, that passes through the center of the lens. This approximation, called the thin lens model, applies to all the lenses that you will learn about in this section.

73 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses Paper can be ignited by producing a real image of the Sun on the paper. The rays of the Sun are almost exactly parallel when they reach Earth.

74 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) After being refracted by the lens, the rays converge at the focal point, F, of the lens. The figure shows two focal points, one on each side of the lens. You could turn the lens around, and it will work the same.

75 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) Click image to view movie.

76 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) When an object is placed at the focal point of a convex lens, the refracted rays will emerge in a parallel beam and no image will be seen. When the object is brought closer to the lens, the rays will diverge on the opposite side of the lens, and the rays will appear to an observer to come from a spot on the same side of the lens as the object. This is a virtual image that is upright and larger compared to the object.

77 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) The figure shows how a convex lens forms a virtual image. The object is located between F and the lens.

78 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) Ray 1, as usual, approaches the lens parallel to the principal axis and is refracted through the focal point, F.

79 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) Ray 2 travels from the tip of the object, in the direction it would have if it had started at F on the object side of the lens.

80 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) The dashed line from F to the object shows you how to draw ray 2.

81 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) Ray 2 leaves the lens parallel to the principal axis. Rays 1 and 2 diverge as they leave the lens. Thus, no real image is possible.

82 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) Drawing sight lines for the two rays back to their apparent intersection locates the virtual image.

83 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) It is on the same side of the lens as the object, and it is upright and larger compared to the object.

84 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Convex Lenses (cont.) Note that the actual image is formed by light that passes through the lens. But you can still determine the location of the image by drawing rays that do not have to pass through the lens.

85 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses A concave lens causes all rays to diverge. The figure shows how such a lens forms a virtual image.

86 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) Ray 1 approaches the lens parallel to the principal axis, and leaves the lens along a line that extends back through the focal point.

87 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) Ray 2 approaches the lens as if it is going to pass through the focal point on the opposite side, and leaves the lens parallel to the principal axis.

88 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) The sight lines of rays 1 and 2 intersect on the same side of the lens as the object. Because the rays diverge, they produce a virtual image.

89 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) The image is located at the point from where the two rays apparently diverge. The image also is upright and smaller compared to the object.

90 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) This is true no matter how far from the lens the object is located. The focal length of a concave lens is negative.

91 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) When solving problems for concave lenses using the thin lens equation, you should remember that the sign convention for focal length is different from that of convex lenses. If the focal point for a concave lens is 24 cm from the lens, you should use the value f = −24 cm in the thin lens equation.

92 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Concave Lenses (cont.) All images for a concave lens are virtual. Thus, if an image distance is given as 20 cm from the lens, then you should use di = −20 cm. The object position always will be positive.

93 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Lens Equations The problems that you will solve involve spherical thin lenses, lenses that have faces with the same curvature as a sphere. Based on the thin lens model, as well as the other simplifications used in solving problems for spherical mirrors, equations have been developed that look exactly like the equations for spherical mirrors.

94 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Lens Equations (cont.) The thin lens equation relates the focal length of a spherical thin lens to the object position and the image position. The inverse of the focal length of a spherical lens is equal to the sum of the inverses of the image position and the object position.

95 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Lens Equations (cont.) The magnification equation for spherical mirrors also can be used for spherical thin lenses. It is used to determine the height and orientation of the image formed by a spherical thin lens. The magnification of an object by a spherical lens, defined as the image height divided by the object height, is equal to the negative of the image position divided by the object position.

96 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Lens Equations (cont.) It is important that you use the proper sign conventions when using these equations. The table shows a comparison of the image position, magnification, and type of image formed by single convex and concave lenses when an object is placed at various object positions, do, relative to the lens.

97 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Lens Equations (cont.) As with mirrors, the distance from the principal plane of a lens to its focal point is the focal length, f. The focal length depends upon the shape of the lens and the index of refraction of the lens material. Focal lengths and image positions can be negative. For lenses, virtual images are always on the same side of the lens as the object, which means that the image position is negative.

98 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Lens Equations (cont.) When the absolute value of a magnification is between zero and one, the image is smaller than the object. Magnifications with absolute values greater than one represent images that are larger than the objects. A negative magnification means the image is inverted compared to the object. Notice that a concave lens produces only virtual images, whereas a convex lens can produce real images or virtual images.

99 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens An object is placed 32.0 cm from a convex lens that has a focal length of 8.0 cm. a. Where is the image? b. If the object is 3.0 cm high, how tall is the image? c. What is the orientation of the image?

100 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Step 1: Analyze and Sketch the Problem Sketch the situation, locating the object and the lens. Draw the two principal rays.

101 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Identify the known and unknown variables. Known: xo = 32.0 cm ho = 3.0 cm f = 8.0 cm Unknown: xi = ? hi = ?

102 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Step 2: Solve for the Unknown

103 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Use the thin lens equation to determine xi.

104 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Substitute f = 8.0 cm, xo = 32.0 cm 11 cm away from the lens on the side opposite the object

105 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Use the magnification equation and solve for image height.

106 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Substitute di = 11 cm, ho = 3.0 cm, xo = 32.0 cm The negative sign means that the image is inverted.

107 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Step 3: Evaluate the Answer

108 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) Are the units correct? All are in centimeters. Do the signs make sense? Image position is positive (real image) and image height is negative (inverted compared to the object), which make sense for a convex lens.

109 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) The steps covered were: Step 1: Analyze and Sketch the Problem Sketch the situation, locating the object and the lens. Draw the two principal rays.

110 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) The steps covered were: Step 2: Solve for the Unknown Use the thin lens equation to determine di. Use the magnification equation and solve for image height. The negative sign in part b means that the image is inverted.

111 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses An Image Formed by a Convex Lens (cont.) The steps covered were: Step 3: Evaluate the Answer

112 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses Spherical lenses, just like spherical mirrors, have intrinsic defects that cause problems with the focus and color of images. Spherical lenses exhibit an aberration associated with their spherical design, just as mirrors do. In addition, the dispersion of light through a spherical lens causes an aberration that mirrors do not exhibit.

113 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses (cont.) The model that you have used for drawing rays through spherical lenses suggests that all parallel rays focus at the same position. However, this is only an approximation. In reality, parallel rays that pass through the edges of a spherical lens focus at positions different from those of parallel rays that pass through the center.

114 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses (cont.) This inability of a spherical lens to focus all parallel rays to a single point is called spherical aberration. Making lens surfaces aspherical, such as in cameras, eliminates spherical aberration. In high-precision instruments, many lenses, often five or more, are used to form sharp, well-defined images.

115 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses (cont.) Lenses have a second defect that mirrors do not have. A lens is like a prism, so different wavelengths of light are refracted at slightly different angles. Thus, the light that passes through a lens, especially near the edges, is slightly dispersed.

116 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses (cont.) An object viewed through a lens appears to be ringed with color. This effect is called chromatic aberration. The term chromatic comes from the Greek word chromo, which means “color.”

117 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses (cont.) Chromatic aberration is always present when a single lens is used. However, this defect can be greatly reduced by an achromatic lens, which is a system of two or more lenses, such as a convex lens with a concave lens, that have different indices of refraction.

118 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Defects of Spherical Lenses (cont.) Both lenses in the figure disperse light, but the dispersion caused by the convex lens is almost canceled by the dispersion caused by the concave lens. The index of refraction of the convex lens is chosen so that the combination of lenses still converges the light.

119 SECTION18.2 Section Check What type of image does a convex lens produce, when an object is placed at a distance greater than twice the focal length of the lens? A. A real image is produced that is inverted and smaller as compared to the object. B. A virtual image is produced that is smaller than the object. C. A real image is produced that is inverted and larger than the object. D. A real image is produced that is inverted and the same size as the object.

120 SECTION18.2 Section Check Answer Reason: For the purpose of locating the image, you only need to use two rays. Ray 1 is parallel to the principle axis. It refracts and passes through F on the other side of the lens. Ray 2 passes through F on its way to the lens.

121 SECTION18.2 Section Check What will be the position and size of the image when an object is placed at a distance equal to twice the focal length of a convex lens? A. An inverted image bigger than the object will be produced beyond 2F. B. An inverted image smaller than the object will be produced beyond 2F. C. The image will be produced at infinity. D. An inverted image having the same size as the object will be produced at 2F.

122 SECTION18.2 Section Check Answer Reason: If an object is placed at a distance equal to twice the focal length of a convex lens, an inverted image will be produced at 2F. The size of the image will be the same as the size of the object as shown in the following ray diagram.

123 SECTION18.2 Section Check What type of image is produced by a convex lens, when the object is placed between F and 2F? A. A real image is produced that is inverted and smaller than the object. B. A virtual image is produced that is smaller than the object. C. A real image is produced that is inverted and bigger than the object. D. A real image is produced that is inverted and the same size as the object.

124 SECTION18.2 Section Check Answer Reason: When an object is placed between F and 2F, a real image is produced that is inverted and bigger than the object. This is shown in the following figure.

125

126 Application of Lenses MAIN IDEA Essential Questions
SECTION18.3 Application of Lenses MAIN IDEA People see objects that they could not otherwise see by using lenses. Essential Questions How does the eye focus light to form an image? What are nearsightedness and farsightedness and how can eyeglass lenses correct these defects? What are the characteristics of the optical systems in some common optical instruments?

127 Application of Lenses Review Vocabulary New Vocabulary
SECTION18.3 Application of Lenses Review Vocabulary Index of refraction for a medium, the ratio of the speed of light in a vacuum to the speed of light in that medium New Vocabulary Nearsightedness Farsightedness

128 Application of Lenses Lenses in Eyes
SECTION18.3 Application of Lenses Lenses in Eyes The properties that you have learned for the refraction of light through lenses are used in almost every optical instrument. In many cases, a combination of lenses and mirrors is used to produce clear images of small or faraway objects. Telescopes, binoculars, cameras, microscopes, and even your eyes contain lenses.

129 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) The eye is a fluid-filled, almost spherical vessel. Light that is emitted or reflected off an object travels into the eye through the cornea. The light then passes through the lens and focuses onto the retina that is at the back of the eye. Specialized cells on the retina absorb this light and send information about the image along the optic nerve to the brain.

130 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) Because of its name, you might assume that the lens of an eye is responsible for focusing light onto the retina. In fact, light entering the eye is primarily focused by the cornea because the air-cornea surface has the greatest difference in indices of refraction. The lens is responsible for the fine focus that allows you to clearly see both distant and nearby objects.

131 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) Using a process called accommodation, muscles surrounding the lens can contract or relax, thereby changing the shape of the lens. This, in turn, changes the focal length of the eye. When the muscles are relaxed, the image of distant objects is focused on the retina. When the muscles contract, the focal length is shortened, and this allows images of closer objects to be focused on the retina.

132 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) The eyes of many people do not focus sharp images on the retina. Instead, images are focused either in front of the retina or behind it. External lenses, in the form of eyeglasses or contact lenses, are needed to adjust the focal length and move images to the retina.

133 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) The figure shows the condition of nearsightedness, or myopia, whereby the focal length of the eye is too short to focus light on the retina. Images are formed in front of the retina.

134 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) Concave lenses correct this by diverging light, thereby increasing images’ distances from the lens, and forming images on the retina.

135 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) You also can see in the figure that farsightedness, or hyperopia, is the condition in which the focal length of the eye is too long. Images are, therefore, formed past the retina.

136 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) A similar result is caused by the increasing rigidity of the lenses in the eyes of people who are more than about 45 years old. Their muscles cannot shorten the focal length enough to focus images of close objects on the retina.

137 Application of Lenses Lenses in Eyes (cont.)
SECTION18.3 Application of Lenses Lenses in Eyes (cont.) For either defect, convex lenses produce virtual images farther from the eye than the associated objects. The image from the lens becomes the object for the eye, thereby correcting the defect.

138 Refracting Telescopes
SECTION18.3 Application of Lenses Refracting Telescopes An astronomical refracting telescope uses lenses to magnify distant objects. The figure shows the optical system for a Keplerian telescope.

139 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) Light from stars and other astronomical objects is so far away that the rays can be considered parallel.

140 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) The parallel rays of light enter the objective convex lens and are focused as a real image at the focal point of the objective lens.

141 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) The image is inverted compared to the object. This image then becomes the object for the convex lens of the eyepiece.

142 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) Notice that the eyepiece lens is positioned so that the focal point of the objective lens is between the eyepiece lens and its focal point.

143 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) This means that a virtual image is produced that is upright and larger than the first image.

144 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) However, because the first image was already inverted, the final image is still inverted.

145 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) For viewing astronomical objects, an image that is inverted is acceptable.

146 Refracting Telescopes (cont.)
SECTION18.3 Application of Lenses Refracting Telescopes (cont.) In a telescope, the convex lens of the eyepiece is almost always an achromatic lens. An achromatic lens is a combination of lenses that function as one lens. The combination of lenses eliminates the peripheral colors, or chromatic aberration, that can form on images.

147 Application of Lenses Cameras
SECTION18.3 Application of Lenses Cameras The figure shows the optical system used in a single-lens reflex camera. As light enters the camera, it passes through an achromatic lens. This lens system refracts the light much like a single convex lens would, forming an image that is inverted on the reflex mirror.

148 Application of Lenses Cameras (cont.)
SECTION18.3 Application of Lenses Cameras (cont.) The image is reflected upward to a prism that redirects the light to the viewfinder.

149 Application of Lenses Cameras (cont.)
SECTION18.3 Application of Lenses Cameras (cont.) When the person holding the camera takes a photograph, he or she presses the shutter-release button, which briefly raises the mirror. The light, instead of being diverted upward to the prism, then travels along a straight path to focus on the film.

150 Application of Lenses Microscopes
SECTION18.3 Application of Lenses Microscopes Like a telescope, a microscope has both an objective convex lens and a convex eyepiece. However, microscopes are used to view small objects. The figure shows the optical system used in a simple compound microscope.

151 Application of Lenses Microscopes (cont.)
SECTION18.3 Application of Lenses Microscopes (cont.) The object is located between one and two focal lengths from the objective lens. A real image is produced that is inverted and larger than the object. As with a telescope, this image then becomes the object for the eyepiece. This image is between the eyepiece and its focal point.

152 Application of Lenses Microscopes (cont.)
SECTION18.3 Application of Lenses Microscopes (cont.) A virtual image is produced that is upright and larger than the image of the objective lens. Thus, the viewer sees an image that is inverted and greatly larger than the original object.

153 Application of Lenses Binoculars
SECTION18.3 Application of Lenses Binoculars Binoculars, like telescopes, produce magnified images of faraway objects. Each side of the binoculars is like a small telescope: light enters a convex objective lens, which inverts the image.

154 Application of Lenses Binoculars (cont.)
SECTION18.3 Application of Lenses Binoculars (cont.) The light then travels through two prisms that use total internal reflection to invert the image again, so that the viewer sees an image that is upright compared to the object.

155 Application of Lenses Binoculars (cont.)
SECTION18.3 Application of Lenses Binoculars (cont.) The prisms also extend the path along which the light travels and direct it toward the eyepieces of the binoculars.

156 Application of Lenses Binoculars (cont.)
SECTION18.3 Application of Lenses Binoculars (cont.) Just as the separation of your two eyes gives you a sense of three dimensions and depth, the prisms allow a greater separation of the objective lenses, thereby improving the three-dimensional view of a distant object.

157 Section Check Describe how the eyes focus light to form an image.

158 SECTION18.3 Section Check Answer Light entering the eye is primarily focused by the cornea because the air-cornea surface has the greatest difference in indices of refraction. The lens is responsible for the fine focus that allows you to see both distant and nearby objects clearly. Using a process called accommodation, muscles surrounding the lens can contract or relax, thereby changing the shape of the lens. This, in turn, changes the focal length of the eye. s

159 SECTION18.3 Section Check Answer When the muscles are relaxed, the image of distant objects is focused on the retina. When the muscles contract, the focal length is shortened, and this allows images of closer objects to be focused on the retina. s

160 SECTION18.3 Section Check Describe the optical system in an astronomical refracting telescope.

161 SECTION18.3 Section Check Answer An astronomical refracting telescope uses lenses to magnify distant objects. Light from stars and other astronomical objects is so far away that the rays can be considered parallel. The parallel rays of light enter the objective convex lens and are focused as a real image at the focal point of the objective lens, Fo. The image is inverted compared to the object.

162 SECTION18.3 Section Check Answer Rays from this image then become the object for the convex lens of the eyepiece. Notice that the eyepiece lens is positioned so that the point Fo is between the eyepiece lens and its focus. This means that a virtual image is produced that is upright and larger than the object. However, because the image at Fo was inverted, the viewer sees an image that is inverted.

163 SECTION18.3 Section Check Describe the optical system in a single-lens reflex camera.

164 SECTION18.3 Section Check Answer As light rays enter a camera, they pass through an achromatic lens. This lens system refracts the light much like a single convex lens would, forming an image that is inverted on the reflex mirror. The image is reflected upward to a prism that redirects the light to the viewfinder. Pressing the shutter release button of a camera briefly raises the mirror. The light, instead of being diverted upward to the prism, then travels along a straight path to focus on the film.

165

166 Refraction and Lenses Physics Online Study Guide
CHAPTER18 Refraction and Lenses Resources Physics Online Study Guide Chapter Assessment Questions Standardized Test Practice

167 SECTION18.1 Refraction of Light Study Guide A beam of light refracts when it travels across a boundary from one medium with an index of refraction (n1) into a medium with a different index of refraction (n2). Refraction is described by Snell’s law of refraction. n1 sin 1 = n2 sin 2

168 SECTION18.1 Refraction of Light Study Guide The speed of light in a medium is slower than the speed of light in a vacuum. The ratio of the speed of light in a vacuum (c) to the speed of light in a medium (v) is the index of refraction (n) of the medium.

169 SECTION18.1 Refraction of Light Study Guide When light traveling through a medium hits a boundary with a medium of a smaller index of refraction, if the angle of incidence exceeds the critical angle (θc) the light will be reflected back into the original medium by total internal reflection. The indices of refraction for the mediums determine the critical angle.

170 SECTION18.1 Refraction of Light Study Guide Optical effects such as mirages and rainbows are the result of refraction. Mirages occur due to the effect of temperature on n and rainbows occur because refracted white light is dispersed.

171 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Study Guide A single convex lens produces a real image, formed by converging light rays, when the object is at the focal point or farther from the lens. A single convex lens produces a virtual image, formed by diverging light rays, when the object is between the lens and the focal point. A single concave lens always produces a virtual image, formed by diverging light rays.

172 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Study Guide Ray diagrams use two rays to determine the position, magnification, and orientation of an image formed by a lens. The thin lens equation provides the relationship between focal length (f), object position (xo) and image position (xi). The magnification (m) of an image by a lens is defined by the magnification equation.

173 Convex and Concave Lenses
SECTION18.2 Convex and Concave Lenses Study Guide All simple lenses have chromatic aberration. Chromatic aberration is reduced by using a combination of lenses with different indices of refraction.

174 SECTION18.3 Application of Lenses Study Guide Differences in indices of refraction between air and the cornea are primarily responsible for focusing light in the eye. Nearsightedness is the inability to focus clearly on distant objects. A concave lens corrects nearsightedness. Farsightedness is the inability to focus clearly on nearby objects. A convex lens corrects farsightedness.

175 SECTION18.3 Application of Lenses Study Guide Optical instruments use combinations of lenses to obtain clear images of small or distant objects.

176 CHAPTER18 Refraction and Lenses Chapter Assessment How does the light traveling through a transparent fiber maintain its intensity over the distance of the fiber?

177 CHAPTER18 Refraction and Lenses Chapter Assessment Answer: Optical fibers are an important technical application of total internal reflection. The light traveling through the transparent fiber always hits the internal boundary of the optical fiber at an angle greater than the critical angle, so all of the light is reflected and none of the light is transmitted through the boundary. Thus, the light maintains its intensity over the distance of the fiber.

178 CHAPTER18 Refraction and Lenses Chapter Assessment Which of the following properties of light causes rainbows? A. constructive interference of light B. dispersion of light C. diffraction of light D. destructive interference of light

179 CHAPTER18 Refraction and Lenses Chapter Assessment Reason: A rainbow is a spectrum formed when sunlight is dispersed by water droplets in the atmosphere. Sunlight that falls on a water droplet is refracted. Because of dispersion, each color is refracted at a slightly different angle.

180 CHAPTER18 Refraction and Lenses Chapter Assessment Why do concave lenses produce only virtual images that are upright and smaller compared to the objects?

181 CHAPTER18 Refraction and Lenses Chapter Assessment Answer: A concave lens causes all rays to diverge. The following figure shows how such a lens forms a virtual image.

182 CHAPTER18 Refraction and Lenses Chapter Assessment Answer: Ray 1 approaches the lens parallel to the principal axis. It leaves the lens along a line that extends back through the focal length. Ray 2 approaches the lens as if it is going to pass through the focal point on the opposite side, and leaves the lens parallel to the principal axis. The sight lines of rays 1 and 2 intersect on the same side of the lens as the object. Because the rays diverge, they produce a virtual image. The image is located at the point from where the two rays apparently diverge. The image is upright and smaller as compared to the object.

183 CHAPTER18 Refraction and Lenses Chapter Assessment An object is placed 30 cm from a convex lens that has a focal length of 8 cm. What is the image distance? A. C. B. D.

184 Refraction and Lenses Reason: The thin lens equation is:
CHAPTER18 Refraction and Lenses Chapter Assessment Reason: The thin lens equation is: The reciprocal of the focal length of a spherical mirror is equal to the sum of the reciprocal of the image position and the object position. Then,

185 CHAPTER18 Refraction and Lenses Chapter Assessment What are nearsightedness and farsightedness? How can these defects be corrected? Answer: A nearsighted person cannot see distant objects clearly, because images are focused in front of the retina. A concave lens corrects this defect. A farsighted person cannot see close objects clearly, because images are focused behind the retina. A convex lens corrects this defect.

186 CHAPTER18 Refraction and Lenses Standardized Test Practice A flashlight beam is directed at a swimming pool in the dark at an angle of 46° with respect to the normal to the surface of water. What is the angle of refraction of the beam in the water? (The refractive index for water is ) A. 18° B. 30° C. 33° D. 44°

187 CHAPTER18 Refraction and Lenses Standardized Test Practice The speed of light in diamond is 1.24×108 m/s. What is the index of refraction of diamond? A B C. 1.24 D. 2.42 Edit this image. Use the correct multiply sign.

188 CHAPTER18 Refraction and Lenses Standardized Test Practice Which one of the items below is not involved in the formation of rainbows? A. diffraction B. dispersion C. reflection D. refraction

189 CHAPTER18 Refraction and Lenses Standardized Test Practice George’s picture is being taken by Cami, as shown in the figure, using a camera which has a convex lens with a focal length of m. Determine George’s image position. A cm B cm C cm D cm

190 CHAPTER18 Refraction and Lenses Standardized Test Practice What is the magnification of an object that is m in front of a camera that has an image position of 5.0 cm? A B C. 0.83 D. 1.2

191 Refraction and Lenses Test-Taking Tip Use as Much Time as You Can
CHAPTER18 Refraction and Lenses Standardized Test Practice Test-Taking Tip Use as Much Time as You Can You will not get extra points for finishing a test early. Work slowly and carefully to prevent careless errors that can occur when you are hurrying to finish.

192 Refraction and Lenses Indices of Refraction Chapter Resources

193 CHAPTER18 Refraction and Lenses Chapter Resources Angle of Refraction

194 Wave Model of Refraction
CHAPTER18 Refraction and Lenses Chapter Resources Wave Model of Refraction

195 Understanding Total Internal Refraction
CHAPTER18 Refraction and Lenses Chapter Resources Understanding Total Internal Refraction

196 Optical Fibers as an Application of Total Internal Refraction
CHAPTER18 Refraction and Lenses Chapter Resources Optical Fibers as an Application of Total Internal Refraction

197 CHAPTER18 Refraction and Lenses Chapter Resources Mirages

198 CHAPTER18 Refraction and Lenses Chapter Resources Dispersion of Light

199 Refraction and Lenses Formation of Rainbows Chapter Resources

200 Convex and Concave Lens
CHAPTER18 Refraction and Lenses Chapter Resources Convex and Concave Lens Horizons Companies Horizons Companies

201 The Focal Point of a Lens
CHAPTER18 Refraction and Lenses Chapter Resources The Focal Point of a Lens

202 An Object Placed at Twice the Focal Length from the Lens
CHAPTER18 Refraction and Lenses Chapter Resources An Object Placed at Twice the Focal Length from the Lens

203 Chromatic Aberration of a Simple Lens
CHAPTER18 Refraction and Lenses Chapter Resources Chromatic Aberration of a Simple Lens

204 The Cross Sections of Four Different Thin Lenses
CHAPTER18 Refraction and Lenses Chapter Resources The Cross Sections of Four Different Thin Lenses

205 An Air Lens Constructed of Two Watch Glasses
CHAPTER18 Refraction and Lenses Chapter Resources An Air Lens Constructed of Two Watch Glasses

206 CHAPTER18 Refraction and Lenses Chapter Resources The Human Eye

207 Nearsightedness and Farsightedness
CHAPTER18 Refraction and Lenses Chapter Resources Nearsightedness and Farsightedness

208 CHAPTER18 Refraction and Lenses Chapter Resources A Ray of Light Strikes the Interface between the Air and a Person’s Cornea

209 An Astronomical Refracting Telescope
CHAPTER18 Refraction and Lenses Chapter Resources An Astronomical Refracting Telescope

210 A Typical Binocular Design
CHAPTER18 Refraction and Lenses Chapter Resources A Typical Binocular Design

211 The Optical System Used in a Single-lens Reflex Camera
CHAPTER18 Refraction and Lenses Chapter Resources The Optical System Used in a Single-lens Reflex Camera

212 The Optical System Used in a Simple Compound Microscope
CHAPTER18 Refraction and Lenses Chapter Resources The Optical System Used in a Simple Compound Microscope

213 CHAPTER18 Refraction and Lenses Chapter Resources Concept Mapping

214 Determining Whether Substance A or B has a Larger Index of Refraction
CHAPTER18 Refraction and Lenses Chapter Resources Determining Whether Substance A or B has a Larger Index of Refraction

215 A Ray of Light Travelling from Air into a Liquid
CHAPTER18 Refraction and Lenses Chapter Resources A Ray of Light Travelling from Air into a Liquid

216 CHAPTER18 Refraction and Lenses Chapter Resources Swimming Pool Lights

217 CHAPTER18 Refraction and Lenses Chapter Resources A Ray of Light

218 A Light Ray Enters a Block of Crown Glass
CHAPTER18 Refraction and Lenses Chapter Resources A Light Ray Enters a Block of Crown Glass

219 Sunlight Reflects Diffusively off the Bottom of an Aquarium
CHAPTER18 Refraction and Lenses Chapter Resources Sunlight Reflects Diffusively off the Bottom of an Aquarium

220 The Adjacent Sides of a Square Block of Glass
CHAPTER18 Refraction and Lenses Chapter Resources The Adjacent Sides of a Square Block of Glass

221 Determining George’s Image Position
CHAPTER18 Refraction and Lenses Chapter Resources Determining George’s Image Position

222 Determining the Image Position
CHAPTER18 Refraction and Lenses Chapter Resources Determining the Image Position

223 Refraction and Lenses Angle of Refraction
CHAPTER18 Refraction and Lenses Chapter Resources Angle of Refraction A light beam in air hits a sheet of crown glass at an angle of 30.0°. At what angle is the light beam refracted?

224 An Image Formed by a Convex Lens
CHAPTER18 Refraction and Lenses Chapter Resources An Image Formed by a Convex Lens An object is placed 32.0 cm from a convex lens that has a focal length of 8.0 cm. a. Where is the image? b. If the object is 3.0 cm high, how high is the image? c. What is the orientation of the image?

225 End of Custom Shows


Download ppt "Principles and Problems"

Similar presentations


Ads by Google