Presentation is loading. Please wait.

Presentation is loading. Please wait.

 ku (- cs' ns bIdrd l=udrs  fYa%Ksh (- 9 fYa%Ksh  mdi, (- nm$ fyd$ iS,r;k u' js.

Similar presentations


Presentation on theme: " ku (- cs' ns bIdrd l=udrs  fYa%Ksh (- 9 fYa%Ksh  mdi, (- nm$ fyd$ iS,r;k u' js."— Presentation transcript:

1  ku (- cs' ns bIdrd l=udrs  fYa%Ksh (- 9 fYa%Ksh  mdi, (- nm$ fyd$ iS,r;k u' js

2

3

4 wNHjldY.ufka jssldYh )wNHjldyh iSudjla fkdfmkajkakls‘ ' tys we;s foa fudkjdo@ ta fld;ruso@ hkak lsis osfkl fijSh fkdyelsh ' tfy;a wNHjldYh ms<snoj.fjsIKhg wE; w;S;fha isgu usksid fhduq jsh' ta wkqj nsys jQ lafIa;% j,ska tlls " wNHjldY joHdj'

5 wNHjldY,qyq~q b;sydih.ek Tn okakjdo@  1957.10. 04 m%:u reishdkq pkaøsldj jQ iamqgsksla.=jka.; jsh'  1957.11.03 iamqgsksla 2 reishdkq pkaøsldj,hsld kus ne,a, iu..=jka.; jsh'  1959.05.18 wdfnS,a kus j÷rd iys; wefurslka hdkh.=jka.; jsh'  1959.10.04 reishdj,Qkd kus pkaøsldj i| jgd hdug llI.; l<dh'  1961.05.05. reishdj hqrs..drska kus wNHjldY.dushd re.;a fjdiafgdla 1.=jka.; jsh'  1961.05.05. wefurslka wNHjldY.uS we,ka nS fImvs.=jka.; jsh'

6  1962.02.02 wefurslka Pd;sl fPdaka.af,ka f*%kavsIsma - 7 kus lemaiq,fhka mD:sjsh jgd ;=kajrla.sfhah'  1969.07.16 wefursldj wemf,da 11 hdkfhka kS,a wusiafg%daka Ts,avs%ka iy uhsl,a hk..k.duSka i| fj; hejSh'  1969.07.21 jk osk i| u; md ;enSh'  1972.12.07 wefursldj mhkshra 10 hdkfhka usksiqka iy uQka n.s kus hdkh i|g hejsh'  1991.05.18 ns%;dkH Pd;sl fy,ka Iduka reishdkq fidhqia -72 hdkfhka wNHjldYhg.shdh' b;srs gsl '''''''''''

7 kQk; miqnsu³ lD;s%u pkaøsld ' wNHjldY.fjsIKfha jeo.;a ikaOsia:dkhla jQfha ls%' j 1959 Tlaf;dusnra 4 jeks osk fidajshgs reishdj f,i.=jka.; lruska mD:sjsh jgd llaI.; lsrsuhs‘' fuu Ph.%yKh f,dalhu wNHjldY hq.hla lr f.k hEug iu;a jsh' ls%' j 1957fkdjeusnra 03 jeks osk iamqgsksla 2 pkaøsldj reishdj jsiska.=jka.; lrk,os' wNHjldYhg.sh,hsld ne,a,o fuu pkaøsldj ;=< jQjdh' ls% j 1958 oS wefursldj jsiska tlaimaf,dafra 1 iy jEka.dvs 1 hk lD;Su pkaøsld mD:sjs llaI.; lr we;'

8 usksiqka iys; wNHjldY.fjSIKh  1961 uehs ui 08 jeks osk oS fidajshgs reishdj fjdiafgka 1 hdkh hejsh'  Wvq.=jkg hejqkq m%:u usksid hQrs..drskah'  Tyq wNHjldYhg.sh m%:u wefursldkq Pd;slfhls'  fjdiafgdla 6 hdkh u.ska Wvq.=jkg.sh m%:u ldka;dj reishdkq Pd;slfhls'  weh je,kagskd f;friafldajdh'  1963 Pqks 10 jeks osk th.=jka.; jsh'

9 hQrs..drska

10 wemf,da jHdma;sh'  wefursldkq kdid wdh;kh jsiska 1967 oS wemf,da jHdma;sh osh;a lrk,oS' tA u.ska wemf,da 1 isg 17 olajd.=jka.; lrk,os'

11 ..k.duska.ek f;dr;=re jsuid n,uq' wemf,da 11 hdkh u.ska wNHjldY pdrsldfjs fhÿkq kS,a wdusiafg%daka i| u; 1969 PQ,s 21 jeks osk md ;enSh' fuu pdrsldjg iyNd.s jQ wfkl=;a..k.duSka jQfha tvsjska TS,avs%ka yd uhsl,a fld,Skaiah' kS,a wdusiafg%daka we;=¿ msrsi jsiska wefursldkq OPh i| u; kexjqfjsh'

12 )kS,a wdusiafg%daka'

13 )uhsl,a fld,Skaia'

14 )Tvsjska Ts,avs%ka'

15 ..k.duska uqyqK fok.eg,q yd tajdg ms,shus fudkjd oehs oek.eksug Tn leu;so@..k.duska uqyqK fok.eg,q.=re;aj n,h wvq jsu' fuS ksid we;sjk m%Odk;u.eg,qj jkafka yDohg reOsr iemhqu wvq jsuhs' mSvk fjki' wNHjldY.duskaf.a Yajik ls%hdj,shg fus u.ska wmyiq;d we;s fjs'

16 b;srs gsl''''' my<g tafus os WIaK;ajh jevs jsu' wNHjldY hdkhla mD:sjsh lrd wdmiq meusKsfus os jdhqf.da,h ;= raIK n,h ksid hdkd wOsl f,i r;a jsu.eg,qjls' bkaOk imhd.eksfus wmyiqj' hdkh ;=< f.k hd yels bkaOk m%udKh iSud iys;h' w;r u.os bkaOK,N.; fkdyels jsu.eg,qjls'

17 jd;h fkdue;s jsu' fus ksid..k.duskaf.a Yajik ls%hdj,shg wmyiq;d we;s fjs'.eg,q Ph.eksfus Wml%u fudkjdoehs Tn okakjdo@

18 by; lshq.eg,q ioyd jsjsO jsiÿus fhdod.ks' ta fudkjd oehs fidhd n,uq'.=re;aj n,h wvqjsfusos we;s jk.eg,q ioyd lD;%su wNHjldY mrsir ;;aj ;=< mqyqKq jsfus lreKq,efns' WIaK;ajh jevs jsu je,elajsug jsfYaI wdf,am fhdod.ks' tajd hdkdj, msg; wdf,am lrkq,efns' bkaok wjYH;d iQraHh negrs u.ska imhd.ks' jd;h fkdue;s jsug jsiÿus f,i TlaisPka msrjq is,skavr Ndjs;hg.ks'

19 wNHjldY Ig, hdkd'' frdlgs hdkd kej; kej; Ndjs; l< fkdyels ksid Ig, hdkd ksmojsug usksid fm<Tsks' fPgs hdkhl yevrej we;s Ig, hdkd frdlgsgqjla fuka.=jka.; l<;a kej; fmd<j lrd meusfKkafka.=jka f;dgqm,lg meusfKk wdldrhghs' fus u.ska usksiqka muKla fkdj jsjsO NdKav o wNHjldIh fj; f.k hd yelsh Ig,hla u.ska tl jr.uka l< yelsh'

20 )b;srs gsl'' Ig,hla u.ska mD:sjsfha isg Wmrsu jYfhka lsf,dauSgra 35880 la by<g hd yelsh' bkaOk jYfhka øj TlaisPka yd øj yhsøPka hdkh ;=<.nvd lr we;' ksjfia we;s myiqlus Ig, hdkd ;=, o we;' fmd,jg meusKsfus os fuskdfha fjs.h mehg lsf,dausgr 225 335 la w;r fjs' fldf,dusnshd pef,kaPra" vsialjrs fujeks wNHjldY Ig, lsysmhls'

21 )wNHjldY mrafhaIKd.dr) Rocket (physics) I INTRODUCTI ON Rocket (physics), general term for a jet propulsion device propelled by the expulsion of gases generated in a combustion chamber (see Jet Propulsion). Because the combustible propellants contain both fuel and an oxidizer, a rocket develops thrust independent of its surroundings, unlike other types of jet engines that utilize oxygen from the atmosphere to burn fuel carried aboard (see Combustion). A rocket engine, therefore, is self-contained and is the only type of device suitable for flight propulsion into outer space. Thrust to propel a rocket is based on Isaac Newton's third law of motion (see Mechanics), which states that for every action, there is an equal and opposite reaction. The principle of a rocket motor may be understood by considering the example of a closed container filled with a compressed gas. Within this container the gas exerts equal pressure on every point of its walls. If a hole is punched in the bottom of the container, however, the gas at the bottom escapes and the pressure against the top of the container is no longer equalized. The internal gas pressure then pushes the container upwards in reaction to the jet of air escaping downwards. The amount of thrust developed by a rocket motor depends mainly on two factors, the velocity with which the burning gases leave the combustion chamber, and the mass of the burning gases. Rockets may be divided into two principal classes, solid-propellant rockets, such as intercontinental ballistic missiles (ICBM), and liquid-propellant rockets, such as the Saturn 5 space booster (See Guided Missiles). In both types of rockets, the combustion chamber in which the fuel burns is called the motor. In a liquid-propellant rocket, the propellants are carried in separate tanks and delivered to the rocket motor as required; in solid-propellant rockets, the propellant charge is stored and burned in the motor. The term rocket has frequently been used to describe both the thrust-producing device and the whole rocket-powered vehicle. To avoid confusion, especially in the case of large vehicles such as missiles and space-launch vehicles, the propulsion device is now usually referred to as a rocket engine. II SOLID-PROPELLANT ROCKETS Early solid-propellant rockets were powered by the combustion of a mixture containing the same ingredients as black gunpowder, but in different proportions. Gunpowder consisted of about 75 per cent saltpetre, 12 per cent sulphur, and 13 per cent charcoal by weight. Rocket charges consisted of 60 per cent saltpetre, 15 per cent sulphur, and 25 per cent charcoal. Because of this different composition, the rocket charge burned more slowly than gunpowder. A Histo ry C Hybrid Rockets In a hybrid rocket the fuel is solid, often a plastic, and the oxidizer is a liquid, either liquid oxygen or, sometimes, nitric acid. The liquid is carried in a pressurized container above the fuel, which burns outward from a centre hole. This system combines the advantages of the solids (easy handling) with the advantages of the liquids, which include regulating the rate of burning, or stopping it altogether by shutting off the flow of the liquid. It is likely that the hybrid systems will be used mainly for steering purposes or for making corrections in velocity. Some missiles and spacecraft are propelled by multi-stage rockets that use liquid propellants in some stages and solid propellants in others. An example of this type is the rocket that drives the US Air Force Titan III C space booster. It has two jettisonable solid-propellant boost rockets attached to liquid-propellant upper stages. D Rocket Nozzles High-performance rocket engines, such as those used in space vehicles operating in near-vacuum conditions, require very large nozzles to reach supersonic jet-exit velocities. The nozzle must have a converging section from the combustion chamber to the narrowest portion, called the throat, at which sonic velocity is reached, followed by a diverging passage. The nozzle exit diameter may be four or five times the diameter of the combustion chamber. The hot, high-velocity gases scrubbing against the nozzle wall impose a serious heat-transfer problem, especially if the firing time has to extend over minutes rather than seconds (see Heat Transfer). This heat-transfer problem is greatest near the throat, at which so-called regenerative cooling is often employed in liquid-propelled engines. In a liquid hydrogen-liquid oxygen motor, for example, the hydrogen may be pumped through small tubes that actually form the wall of the nozzle. The super-cold hydrogen is introduced in the supersonic portion and flows through the tubes to the combustion chamber. One type of advanced rocket engine that is more than twice as efficient as the high-performance liquid hydrogen-liquid oxygen engine is the nuclear rocket engine. Performance of a rocket engine is measured in one way by the pounds of thrust per pound of total propellant used per second. This is called specific impulse (Isp). Whereas the hydrogen-oxygen rocket engine has a rating of perhaps 450, the nuclear rocket engine, which was under development in the United States in the 1960s and 1970s, was rated at 1,100. This engine uses liquid hydrogen, which is converted to gas and heated by means of a nuclear fission reactor to very high temperatures. The hydrogen does not burn but simply passes through a rocket nozzle at high pressure and velocity. Designed for use in space rather than for launching from Earth into space, its main applications would have been as a power plant for shuttle transport between the Earth and the Moon, and for deep-space missions to the planets. Several other advanced types of rocket engines are being developed for future use on prolonged space missions during passage through low gravitational fields in space. Under these conditions low-thrust rocket engines can be used, provided that the thrust can be maintained for long periods with efficient utilization of fuel. The following are some of the types of rocket engines that may be used for this purpose. The plasma-jet contains an extremely hot ionized gas that is allowed to escape from the rear of the engine at high velocity (see Ionization). Some designs of the plasma-jet accelerate the ionized gas by means of an electromagnetic field. The ion engine expels ionized atoms, for example caesium atoms, at high velocity, by means of an electrostatic field (see Ion). The photon engine would eject photons, or light particles, at the speed of light (see Photon). Although the amount of energy of a single photon is almost infinitesimal, the vast numbers of photons ejected would enable the photon engine to produce small thrusts for prolonged periods of time. E Other Rocket Applications In addition to their use as weapons, solid-propellant rockets are employed today as distress signals from ships, aircraft, or the ground, as test vehicles in guided-missile research, and to carry cables across rivers in the construction of bridges. In some cases solid-propellant rockets have carried scientific instruments used in cosmic-ray research at very high altitude (see Cosmic Ray). A special kind of solid-propellant rocket called rocket-assisted take-off (RATO) is used to provide aid in the take-off of heavily loaded aircraft. Liquid-propellant rockets, besides serving as missiles, are applied extensively to carry aloft scientific instruments used in high-altitude research. This type of rocket is also employed to propel sledge-like test vehicles in aviation-medicine and ballistics research (see Aerospace Medicine; Ballistics). See also Warfare. Microsoft ® Encarta ® 2006. © 1993-2005 Microsoft Corporation. All rights reserved. 1979 wf.daia;= 16 jeks osk uq,au wNHjldY mrafhaIlKd.drh Ig, hdkhla u.ska.=jka.; lrk,os' fujeks mrafhaIKd.drhla ;=< PSjs; wdrlaIl WmlrK" o;a; ieliqus WmlrK tla l=gSrhla ;=< we;s w;r" wfkla l=gSrh iusmQrakfhkau mrafhaIKd.drhls' fujeks mrafhaIKd.dr ;=kla oekg.=jka.; lr we;'

22

23

24 jsjsO pkaøsld jra. yÿkd.ksuq'  ikaksfjsok pkaøsld' .ukd.uk pkaøsld'  ld<.=ksl pkaøsld'  jsoHd;aul pkaøsld'

25 )tla tla pkaøsld j, f;dr;=re tla reia lruq')

26  ikaksfjsok pkaøsld tlai;a Pkmofha wdrlaIl fomdrafuska;=j u.ska 1964 oS llaI.; lrk,o pkaøsldj iskaafldus 3 h' iskafldus 3 hkq N+ ia:djr llaIhla Ndjs; lrk,o m%:u ikaksfjsok pkaøsldjhs' 1957 jifra isg fus olajd ikaksfjsok pkaøsld 300 lg jevs m%udKhla llaI.; lr we;' jra;udkfha N+ ia:djr llaI.; pkaøsld j,ska y~" o;a; yqjudrej iy rEmjdyks ikaksfjsokh isÿflfrk w;r f,dj jgd msysgs ksfjia j,g iDPq rEmjdysks jsldYkfhka isÿ lsrsfus yelshdjo we;'

27 ikaksfjsok pkaøsldjlska mD:sjsfha tla ia:dkhl isg ;j;a ia:dkhlg ikaksfjsokh flfrk whqre'

28 .ukd.uk pkaøsld tlai;a Pkmofha kdjsl yuqodj u.ska 1960 oS m%:u.ukd.uk pkaøsldj jQ gd%kaiaisgs 1.=jka.; lrk,os '1996 os fuu pkaøsldfjs wdhq ld,h wjika jq nejska tlai;a Pkmohg tys fiajh wysus jsh' tlai;a Pkmofha.=jka yuqodj u.ska ;u fufyhqus i|yd llaI.; lrk,os' B NAVSTAR Global positioning System (GPS) kus moaO;shg pkaøsld 24 la wvx.= jsh' iusfma%Ilfha jra.h iy Ndjs; l< l%uh u; fuu moaO;shg uS‘ 100 isg fi uS 1 g jvd wvq m%udKhla olajd ksrjoH;djhlska ia:dkSh f;dr;=re iemhSug yelshdj we;' 2002 oSo fuu pkaøsld moaO;sla llaI.; flrsks' GPS

29  ld,.=Ksl jkaøsld ls% j 1960 oS kdid wdh;kh jsiska hjk,o m%:u ld,.=Ksl pkaøsldj Television Infrared Observation Satelite (Tiros) 1 hkqfjka yeoskajsks' TIROSI pkaøsldj u.ska fus jk jsg mD:Sjsfha yd jdhqf.da,fha PdhdrEm 23 000 la muK fmdf,djg tjd we;' tu pkaøsldj;a N+ ia:djr pkaøsldjla f,i mej;sks' The National Oceanic Atmospheric Administration (NOAA) jsiska fufyhjk,o pkaøsld 3 ka oSra> ld,sk ld,.=KSl ;;a;aj ms<snoj o;a; tla ria lr.eksug yels jsh'

30  jsoHd;aul pkaøsld mD:sjs llaIfha ia:dk.; lr we;s fujeks pkaøsld j,g mD:sjsfha is;shus ilia lsrsug i|yd wjYH o;a;,nd.eksu" mD:sjsfha yevh iy m%udKh ksYaph iy id.r iy jdhqf.da,h iusnkaO.;sjsoHdjka wOHhkh lsrsu jeks ldrahhka is¥ l< yelsh' tfukau jdoHd{hska jsiska ysre" iª" fjk;a.%yf,dal yd Tjqkaf.a pkaøhska" OQufla;=" ;drld iy uKaodlsks ms<sn|ksrslaIKh lsrsug;a fuu pkaøsldjka fhdod.ks‘' tfukau 1989 Tlaf;dausnra 17 osk.=jka.; flrekq.e,S,sfhda kus wNHjldY hdkdj fikiqre.%yhd ms<sn|j f;r;=re mD:sjshg tjk,os'tu.ska tys o;a; iy tys pkaøhskaf.a o;a; ms<sn| f;dr;=re wLKavj tjuska mj;s'

31 Wvq.=jkg hejQ f,dalfha m%:u pkaøsldj

32  jsia;rh  jsIalusNh (- fi' uS 58 hs‘'  ialkaOh (- ls'.%E 83' 6 hs'  Tijqus hdkh (- 1 iamqgsksla A f,dalfha m%:u pkaøsldj jQ iamqgsksla -1

33

34 m%:u weursldkq lD;%su pkaøsldj tlaiamaf,darra - 1 jssia;rh frdlgsgqj iu. os. (- fi uS 203hs ^wÕ,a 80hs&' jsIalusNh (- fi uS 15hs ^wÕ,a 6hs&' ialkaOh (- ls.%E 13 9hs' tijqus hdkh (- cQmSgra - ^cqfkda -1' C

35 uerskra -2  jsia;rh Wi (- uS 3 &hs ^wvs 12hs&' m<, (- uS 5hs ^wvs 16hs wÕ,a 6hs&' ialkaOh (- ls.%E 203hs' tijqus hdkh (- wegs,ia wecskd nS' ksIamdokh (- fcgs m%pd,k jsoHd.drh'

36

37 frdlgs ksraudKfha b;sydih³ psk Pd;slhka ls% j 1200 Y; jraIfhaos frdlgs Ndjs’; lr we;s njg idOl yuqfjs' l=vd k,hla ;=< ;oska isr jk fia fjvs fnfy;a wiqrd tajd B;, j, ijs lr hqOj,os Ndjs; lr we;' tu k,fha B;, ysig wdikak fl<jr jsjD;j ;nd ;snsK's tfyhska fjvs fnfy;aj,g oykh jsug yels jq w;r ksmojk jdhqj jsjD; fl<jrska msgjsh' fuu l=vd frdlgsgqj,g iudkj ksraudKh l<.sksfl<s ^wyial+re& jra;udkfha olakg,efn's b;d blsuksksu frdlgsgq ms<snoj hqfrdamhgo jHdma; jsh ls% j 1429 oS fPdaka T*a wdlaf.a fufyhjsu hgf;a m%xYh TSra,shkaia igfkaos tajd fhdod.;a nj mejfi'a ls% j 1800 Y;jraIh wjidk Nd.fhaos wNHjldY pdrsld ioyd frdlgs ;dlaIKh fhdod.eksug usksiqka Wla; jsh'

38 frdlgs i|yd Ndjs;d lrk bkaOk ) frdlgsgqjla.=jka.; lsrsug fyda.uk lrjsug jsYd, Yla;shla wjYH fjs 'fuu Yla;sh,nd.' frdlgsgq i|yd fhdod.kakd m%pd,k yd øj m%pd,k jYfhka fojra.hla fjhs'

39 >k m%pd,k fhdok frdlgsgq b;d ir, ieleiaulska hqla; fjs' tajd ;=< uola jsYd, jQ is,skavrhl m%pd,k wiqrd we; oykfhka ksmojk jdhQka msgjSu ioyd fl<jfrys l=vd jsjrhla ;nd we; tu is,skavdldr fldgi bkaOk oyk l=gSrh f,i o ls%hd lrh's >k m%pd,k

40 ø%j m%pd,k wNHjldY.; lsrsu ioyd fhdod.kq,nk frdlgsgq ioyd >k m%pd,k j,g jvd øj m%pd,k fhdod.ks 'øj m%pd,k >k m%pd,k j,g jvd jsYajikSh;ajfhka by<jSu o tla jdishls wNHjldY Ig,hka yS m%Odk frdlgs tkacska j, oykfhaoS bkaOkh f,i øj yhsv%cka o Tlaisydrlh f,i øj Tlaisscka o fhdod.kS ' fuu m%pd,k fol tlg usY% jSfukac,h ksmojk w;r jsYd, ;dmhla o msg lrkq,nhs' c,h jdhq njg m;ajS frdlgsgQfjs fkdi,h ;=<ska wOsl fjs.fhka msg;g kslafuhs' ;j;a iuyr frdlgsgqj, bkaOkh f,i.efid,Ska fyda yhsv%iSka fhdod.kq,nhs '

41

42 rhsgs *a,hra f,dalfha m%:u.=jkahdkh jQ 1903 rhsgs *,hra kus l=vd.=jka hdkfha m ;u.=jka.ufkaos th ;;amr 59 la mqrd uSgra 260 la ÿr.uka lsrsug iu;a jsh' l%s j 1899oS Tjqka ksmojq irex.,hlska fuu w;ayos ne,Sus wdrusNjQ w;r 1905 oS Tjqkag idra:l f,I ;kd ksu yels jsh'

43  jsia;rh  ;gq w;r ÿr ( uSgra 12'3 ^ wvs 40hs wÕ,a 4&'  os. ( uSgra 6'4 ^ wvs 21hs&'  Wi ( uSgra 28 ^ wvs 9hs wÕ,a 3&'  tkacsu ( ^N+usf;,a tkacsu" wYaj n, 12&'  ksIamdokh ( Tysfhdaj, fvsgkaysos js,anra iy Tjs,a rhsgs jsiska 1903 oS'

44 )rhka.=jka hdkhNYP 1927 uehs 21 jk osk pd,aia ta,skavsnra.a jsiska b;sydifha m<uq tal, gd%kaia w;a,dka;sla.=jka.uk iusmQraK lsrsug iu;a jsh' Tyqf.a fyj;a zzfikags,Qjsia yS cSjhZZ kus jQ hdkfhka Tyq ksjsfhdaralaj, f,dax ¥m;ayS rEiafj,ags N+ush;a m%xYfha mersia w;r jQ ls'us 5810 l ÿr m%udKh;a meh 33hs usks;a;= 30 loS ksud lsrsug iu;a jsh' fuu.=jka.uk;a iu.u,sksvsnra.a fvd,ra 25"000l ;Hd.hl ysuslrejl= jQ w;r ksjsfhdara isg merSish olajd w;a,dka;sla id.rh yryd mshdir l< m%:u.=jka kejshd njgo m;a jsh' merSisfha,dfndaraf.ags N+ushg,skavsnra.a msjsiSu;a iu. Tyq f,dal jSrhl= njgo jQw;r tu oYlfha uyck;djf.a weia Tyq fj; fhduq jSugo th fya;= jsh' Ryan NYP

45  jsia;rh  ;gq w;r ÿr ( uSgra 14 hs ^wvs 46hs&'  hdkfha os. ( uSgra 8 hs ^wvs 27hs wÕ,a 8hs'  Wi ( uSgra 3hs ^wvs 9hs wÕ,a 10hs&'  o< jYfhka nr ( ls'.%E 2330 hs'  tkacsu ( rhsgs jhrajskavs ^wYaj n, 223&'  ksIamdokh ( le,sf*dakshdfjs iekavshdf.days rhka thdra,hskaia iud.u ^1927&' J-5C

46 fn,a -59.=jka hdkh XP A w;ayod ne,Su wruqKq lr.ksuska fuh ksmojd ;snsKs 'th w;ayod ne,Su;a iu.u grafndafcgsj,ska n,.ekajq.=jka hdkd m%dfhda.slj bosl, yels nj;a tajd wfkla.=jka hdkdj,g jvd b;d ldrahlaIu nj;a ;yjqre lr.eksug yelsjsh'fn,a.=jka hdkd iud.u uÕska ie,iqus lr boslrk,o fuu hdkh jraI 1942 Tlaf;dusnra 01 jeks osk le,sf*dakshdfjs jsh<s ushfrdla jsf,ka.=jka.; flrsks 'fn,a iud.fus m%Odk w;ayodne,sfus kshuq frdngs tus iageka,s tys kshuqjd jsh' B<. oskfha ^Tla'2&lrak,a f,darkaia l%Scatys kshuqjd jQ w;r thska grafnsafcgs.=jka hdkhla meojQm%:u wefursldkq.=jka kshuqjd njg m;ajSug Tyqg yelsjsh'

47 jsia;rh ;gq w;r os. ( uSgra 14'9hs ^wvs 49hs&' hdkfha os. ( usgra 12hs ^ wvs 38hs wÕ,a 10hs&' Wi ( usgra 3 8hs ^usgra 12hs wÕ,a 4hs&' tkacsu ( ksIamdokh ( ksjsfhdaralayS n*f,days fn,a.=jka hdkd iud.u' 2 Genaral Electric I-A Centrifugal (flow turbojet) '

48 mska;+rlreKq  Encarta Search Bar.  wka;racd,h u.ska'  9 A fY%aKsfha jsoHdj yd ;dlaIKfjsoh fm< fmdf;ka'  wNHjldY f;dr;=re we;=,;a fmdf;ka'

49

50 fudjqkayg fuu ksmojSus idra:l f,i ksul< yela jQfha Tjqkayg we;s W;aiyh;a" lemjSu;a ksidh' ug;a Tng;a fuhska.;yels wdoraYh jkafka W;aiyfhka lemjSfuka lghq;= lsrSuhs' ug yef.k foA

51


Download ppt " ku (- cs' ns bIdrd l=udrs  fYa%Ksh (- 9 fYa%Ksh  mdi, (- nm$ fyd$ iS,r;k u' js."

Similar presentations


Ads by Google