Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rotational Motion Chap. 10.4-7. NEW CONCEPT ‘Rotational force’: Torque Torque is the “twisting force” that causes rotational motion. It is equal to the.

Similar presentations


Presentation on theme: "Rotational Motion Chap. 10.4-7. NEW CONCEPT ‘Rotational force’: Torque Torque is the “twisting force” that causes rotational motion. It is equal to the."— Presentation transcript:

1 Rotational Motion Chap. 10.4-7

2 NEW CONCEPT ‘Rotational force’: Torque Torque is the “twisting force” that causes rotational motion. It is equal to the magnitude of the component of an applied force perpendicular to the arm transmitting the force. F R A The torque around point A is T = R x F  = I  (compare to F = ma)

3 Example 10-6 Spinning Wheel Solve using torque. Then, using energy.

4 Example: torque’s in balance 2r4f 2m m

5 Figure 10-7 Angular and Linear Speed

6 Conceptual Checkpoint 10-1 How do the angular speeds compare? V=r  How do the linear speeds compare?

7 Figure 10-8 Centripetal and Tangential Acceleration IMPORTANT: For uniform circular motion, The centripetal acceleration is: For constant angular speed, a t = 0. Then, the acceleration is RADIAL, inwards.

8 Figure 10-9 Rolling Without Slipping

9 Figure 10-11 Velocities in Rolling Motion

10 Figure 10-10 Rotational and Translational Motions of a Wheel

11 Figure 10-12 Kinetic Energy of a Rotating Object But… So… Define the moment of inertia, I… (it’s different for different shapes!)

12 Figure 10-13 Kinetic Energy of a Rotating Object of Arbitrary Shape

13 Figure 10-15 The Moment of Inertia of a Hoop All of the mass elements are at the same radius, so….

14 Figure 10-16 The Moment of Inertia of a Disk A disk is like a set of nested hoops. With some algebra….

15 Table 10-1a Moments of Inertia for Uniform, Rigid Objects of Various Shapes and Total Mass M

16 Conceptual Checkpoint 10-2 How does the moment of inertia depend on the axis of rotation? I = 2 (MR 2 ) I=M(2R) 2 =4MR 2

17 Kinetic energy of rotating object Total kinetic energy = Energy of translation plus energy of rotation. Energy of translation: one-half m vee squared. Energy of rotation: one-half I omega squared.

18 A hoop and a disk roll without slipping with the same speed. They have the same mass and radius. Is the kinetic energy of the disk more, less or the same as the hoop? 1. The disk has more K than the hoop. 2. The disk has less K than the hoop. 3. The disk and the hoop have the same K. V V

19 Kinetic energy of disk and hoop. V V The kinetic energy is given by: Disk and hoop have same mass, radius, and velocity. How does K compare? The only difference is the moment of inertia. The disk has SMALLER moment of inertia than the hoop. The further out the mass from the axle, the higher the I.

20 Example 10-6 Spinning Wheel Solve using torque. Then, using energy.

21 Figure 10-24 Problem 10-60

22 0 / 100 Place your bets! 1. The disk reaches the bottom first. 2. The hoop reaches the bottom first. 3. They reach the bottom at the same time. I hoop = MR 2 I disk = ½ MR 2

23 Who wins? Both objects have the same potential energy, U = MGH. More of the potential energy goes into rotational kinetic energy for the hoop, because it has a larger moment of inertia. That leaves less translational energy for the hoop, so it moves slower.

24 Kinetic energy of “rolling without slipping” objects. V 1. 2. 3.

25 X-treme roller ball. 1. The ball reaches a greater height on the frictionless side. 2. The ball reaches a lower height on the frictionless side. 3. The ball goes to the same height. HINT: Consider conservation of energy. What energy is changed into potential energy on the frictionless side?

26 X-treme roller ball explained. Lower! At the bottom of the jump, the ball has both translational and rotational energy. Some of the potential energy U=MGH went into rotational energy. On the frictionless side, the ball continues to rotate, no rotational motion is “lost”. So, there is less kinetic energy to change into potential energy, or height.

27 Rolling down an inclined plane. Mgsin(  ) f Note: Rolling friction is STATIC friction! I Forces acting on rolling body: Translation Rotation “Torque equals I times alpha” For a rolling object: Finally:

28 Rolling down an inclined plane, summary. Mgsin(  ) f If moment of inertia is zero, then we get the same result as for sliding without friction. Check the result: The moment of inertia for symmetrical objects is in the form: I = (number) X MR 2 All objects with same SHAPE roll at same speed, independent of mass!!

29 Atwood Machine with Massive Pulley Pulley with moment of inertia I, radius R. Given M 1, M 2, and H, what is the speed of M 1 just before it hits the ground? Strategy: Use conservation of mechanical energy. Initial kinetic energy is 0. Initial potential energy is M 1 gH. Final kinetic energy is translational energy of both blocks plus rotational energy of pulley. Final potential energy is M 2 gH. Set final energy equal to initial energy.


Download ppt "Rotational Motion Chap. 10.4-7. NEW CONCEPT ‘Rotational force’: Torque Torque is the “twisting force” that causes rotational motion. It is equal to the."

Similar presentations


Ads by Google